A Virtual University Providing an Online Master Program in a Public-Private Partnership: Challenges and Solutions

Karl Kurbel, European University Viadrina Frankfurt (Oder), Business Informatics POB 18 66, 15207 Frankfurt (Oder), Germany, Phone: +49-335-5534-2320, Fax: +49-335-5534-2321

1 INTRODUCTION
The challenges and findings presented in this paper are based on experiences from a completely online master program delivered on the Internet, the “International Master of Business Informatics (MBI)”. This program was designed by the Virtual Global University (VGU) in a private-public partnership with the European University Viadrina (EUV) in Frankfurt/Oder, Germany. Organizational, technical, and legal problems that had to be solved in the development and implementation of this program are discussed.

In the next section the structure and specific features of the MBI program are described. Section 3 discusses organizational problems in creating an online master program provided by a virtual organization like VGU. Legal problems to be attacked are the focus of section 4. In section 5, challenges posed by the multimedia technologies used in the MBI program are discussed, in particular problems that have to be solved when video streaming is a preferred mode of delivering courses. A brief summary and conclusions are given in section 6.

2 BACKGROUND: THE INTERNATIONAL MASTER OF BUSINESS INFORMATICS PROGRAM
The International Master of Business Informatics program is a two-year program in the field of information systems, focusing on the synergy between information technology (IT) and management-concepts. The mission is to teach Business Informatics (BI) students how to use IT effectively to develop solutions for today’s business challenges.

The MBI program comprises four major areas: basic technology, methods, management, and applications.

- **Basic technology** includes courses on applied computer science, computer networks & Internet technology, website engineering, programming, and information security.
- **Business Informatics methods**: While most courses include some methodological approaches, a special focus on BI methods is set in courses like information systems development, database management (DBMS), information systems architectures, business intelligence, and business process modeling.
- **Management oriented topics** are studied in courses on management information systems (MIS), information management, knowledge management, management & organization of IT departments, and software engineering management.
- **Applications**: Important application domains of Business Informatics are investigated in courses on enterprise resource planning (ERP), e-commerce & e-business networking, industrial infor-mation systems, and electronic finance/electronic banking.

Courses are assigned to semesters according to the curriculum illustrated in Figure 1. Full-time students study in principle five courses in each of the first three semesters, while the fourth semester is dedicated to writing a master’s thesis and doing an internship or a project. Electives may be chosen by the students depending on their individual preferences.

The MBI program is mainly targeting students with a business background. Students lacking that background are required to take business courses in the first two semesters. Likewise, students without sufficient programming knowledge have to take Introduction to Programming in their first semester. The majority of MBI courses is multimedia based as further discussed in section 5.1. Most courses stimulate intense interaction with and among students with the help of electronic media like a discussion forum, e-mail, and chat.

Although many students live in Germany, the target group of the MBI program is international. Figure 2 shows the distribution among countries of origin.

In the past years, many virtual courses and a number of so-called “virtual universities” were developed in Germany, yet most of them do not offer complete degree programs. In the field of Business Informatics, two master programs are provided as virtual programs, leading to similar degrees as the MBI. The VAWI program is a three-semester program provided by the Universities of Duisburg-Essen and Bamberg [2]. In the Winfoline program, students are sharing courses from four universities (Goettingen, Saarland, Kassel, Leipzig), partly over the Internet [3].

Those programs unfortunately do not lend themselves to a straightforward comparison with the MBI since the general concepts are quite different.

![Figure 1. MBI curriculum](image-url)
For these reasons, a combination of face-to-face courses and online courses was introduced in winter semester 2005/06. Students may begin the MBI program with one or two semesters of traditional classroom instruction at the European University Viadrina in Frankfurt (Oder) and continue with a series of virtual courses taught over the Internet.

4 LEGAL CHALLENGES

The idea of a virtual Business Informatics program with a virtual faculty was born by a group of distinguished professors dispersed over three countries. While these persons were highly motivated to create a high-quality master program and in fact are teaching that program, they are not authorized, according to German law, to award a master’s degree. All degree programs have to be approved by the state government, i.e., by the ministry responsible for higher education in that state. Therefore a legal arrangement had to be found according to which an approved degree could be awarded. As a solution to this problem, a public-private partnership was created. The public partner in this arrangement is a state university, the European University Viadrina, while the private partner is the Virtual Global University. In order to establish a solid legal relationship, the VGU had to be established as a private limited company. Associates of that company are the professors who teach in the MBI program.

To meet the legal requirements, EUV set up the MBI program with the same procedure as its face-to-face programs, going through all committees and councils of the university. For example, EUV’s Faculty of Business Administration and Economics passed examination regulations according to which the MBI program is conducted. EUV enrolls students onto the MBI program, giving them the same legal status as students studying a face-to-face program in Frankfurt (Oder). Students also receive their master’s degree from EUV. Thus from the ministry’s point of view, the MBI program is a degree program of the European University Viadrina.

In reality, EUV has outsourced the teaching to the Virtual Global University. All of the workload is on VGU staff - on the faculty of the virtual School of Business Informatics (SBI) and on the MBI program office run by VGU. The legal basis of that deal is a contract between VGU and EUV determining rights and duties, including liability in the case should VGU become insolvent. VGU is responsible for conducting courses according to EUV’s study and examination regulations. Should SBI faculty members be unavailable or unwilling to continue teaching then VGU is obligated to provide equivalent substitutes of the same level of academic qualifications. Students pay their tuition to EUV, and EUV pays VGU for teaching the courses - after subtracting its commission. The external view of the MBI program that is transported to stakeholders and to the public is that VGU provides expertise and teaching for the program, while EUV is responsible for ensuring that the program’s
academic and educational standards are maintained at an appropriate level.

In addition to government approval, accreditation had to be sought for the MBI program. The requirement that new study programs have to be accredited was a quite new in Germany, just being introduced in 2001 when the MBI program was under development. According to the legal status, EUV had to apply for accreditation (not VGU), notwithstanding that all bureaucratic work was left to VGU staff. The accreditation procedure required significant flexibility in interpreting accreditation regulations and requirements, both for the accrediting agency and for VGU. After successfully completing that procedure, both sides were proud that for the first time an online master program was accredited in Germany.

The organization of the MBI program and the roles and participants involved are summarized in Figure 3. The locations of the faculty are shown in the map on the left.

5 TECHNICAL CHALLENGES

A range of technologies is available for web-based education [4], yet many courses and programs in today's virtual education are still text based. For the master program underlying this paper, multimedia technologies above the text-based level are playing a major role in the instructional design although traditional modes of instruction are also employed.

5.1 Technologies for Providing Courses

Most courses are based on multimedia technologies like video and audio streaming, hypermedia (linked web pages), synchronized presentation material, and Web-supported textbooks supplemented by multimedia. Course materials are accessible throughout the entire course of study, available to students for viewing and/or downloading at any time.

In the subsequent sections, different approaches to the production and delivery of multimedia-based courses are outlined and illustrated by examples. Specific attention is paid to videos as a major instructional medium since this mode poses significant technical challenges on the course developers. The underlying paradigm is that of web lecturing [5].

Like in a traditional classroom, a lecturer shown in a video explains the matters that are subject of the course. For illustration he or she uses transparencies, slides, computer screens or online material that is displayed on the student's monitor, synchronized with the video of the lecturer.

Web lecturing is a direct mapping of face-to-face lectures. Its advantage is that most teachers have substantial experience in giving "lectures". Therefore the step towards creating web-based courses is only a minor one. On the other hand, lecturing has the well-known disadvantage that it is not very "interactive" [6, 7]. Therefore it needs to be accompanied and enhanced by specific interaction features.

Video-based courses: Our first trials to approximate the look-and-feel of a real lecture in a real classroom were vid-eos taken in a lecture hall and provided for viewing. With powerful video processing and en-coding tools and easy-to-download video players (e.g. Windows Media Player [8], RealPlayer [9]) available today, video record-ings were the pri-mary choice as media type for MBI courses.

However, the limited size of the window on the monitor's screen is a problem when both the person giving the lecture and the material used for illustration are recorded in one video. While a small window of, say, 9 x 6 cm, is sufficient to see (and hear) the speaker explaining things, it may be too small to allow the user to recognize what is written on the trans-par-encies. For transparencies with large fonts like in Figure 4, the one-window approach may still be all right. How-ever, when online computer screens are recorded in this way, nothing will be read-able for the viewer any more.

This problem can be avoided if the person giving the lecture and the material used for illustration are presented in separate windows. Production of this type of video is more compli-cated since now the two components need to be synchronized.

When computerized presentations are used, for example Powerpoint slides, they are converted to a sequence of static GIF files. Since GIF files are smaller than videos, less band-width is needed. In return the size of the window in which the GIF files are shown can be made quite large.

If a real-time program presentation, for example a demo of a CASE tool or an ERP system, is shown and discussed by the lecturer, a second video containing the presentation material has to be recorded by means of a screen re-corder (e.g. Screen Corder [10]). Figure 5 shows a screen-dump of a video-based course from the MBI program where both the lecturer and the presentation material are recorded and played in separate windows.

Audio-based courses: Video production is a non-trivial task requiring experience and plenty of time. Low trans-mis-sion rates are hampering the delivery of videos over the Internet. One way to bypass part of these problems is to use only an audio track instead of an audio-visual presenta-tion of the speaker. Sound can be used nicely in combination with Powerpoint slides or other pre-sentations to form something like a "narrated slide show". Like in a real classroom, the speak-er explains the things illustrated on transparency or slide; however, he or she is not visible. This is clearly less "lively" than a video accompany-ing the presentation material but a lot easier to produce.

Just listening to an audio track may be tiring for the viewer. More than in a video-based course, there is some risk that the viewer may miss important points which are discussed by the lecturer but perhaps not stressed sufficiently. For this reason, audio-based courses can be en-hanced by supplementing the lecturer’s mono-logue with text passages transcribing the speech in full or in parts.

Figure 4. Demo of a recorded lecture video

Figure 5. Video with online screen recording
To make this type of presentation appear more personal, a picture of the lecturer is included in the web pages. An alternative way is to start the lecture by的第一段的first line.

Hypertext courses: This type of course follows the traditional text-based approach. Structured course material is used as in a conventional distance education program. However, all material is provided electronically and can be viewed with a browser. Hyperlinks connect text, graphics, and exercises in a meaningful way. Video clips and voice annotations may be included as well.

Animated courses: Enriching text-oriented or audio-oriented course material by animations is a good way of making the content more interesting and keeping the student’s attention. Animations of different types are used in several of the MBI courses. Content-specific animations are occa-sionally employed to illustrate certain concepts, for example, the flow of calculations in material requirements planning within the MBI course “Enterprise Resource Planning and Beyond”. On the other hand, entire courses can be based on animation technology. “E-commerce and E-busi-ness Networking”, for example, is totally based on Macromedia Flash [11] regarding the production and presentation of course materials.

Multimedia incorporated in textbook courses: An increasing number of text-books comprises not only written and printed text but also suppor-tive features pro-vided on the web-site of the author and/or the publisher (for example [12] and [13]). Nowadays the support goes far be-yond additional exercises or examples not given in the book. Many books have a complete learning environment in the Web, providing videos, audio clips, and interac-tive exercises. Selected courses of the MBI program are based on web-supported textbooks, thus enriching the traditional text-based approach to virtual education with built-in multimedia features.

5.2 Using and Synchronizing Video Streams

From a technological point of view, courses based on video streaming are the most advanced ones in VGU’s multimedia mix for the MBI program. Following the paradigm of lecturing and visual-izing, the user interface requires one or two Media Players.

In the upper right corner of Figure 5 a video of the lecturer is running in a streaming compatible format. The area left of the player is used to show visual materials accompanying the lecturer’s ex-pla-nations. In the simplest case these are text slides, tables, diagrams, charts, etc., similar to in-forma-tion that would be written on a blackboard or an overhead projector in a conventional lecture.

Based on two different approaches to provide visual material plus video lecturing for such a course. The first way which is fairly easy to achieve is to split up the lecture in separate topics and store the respective video clips in se-parate files. If the topics are associated with slides, then each topic, including the video clip, will be started separately.

Although this solution is easy from a technical point of view it is not always feasible. More-over, only static images can be used as ac-com-panying visual informa-tion. Displaying online re-cord-ings of program runs as in Figure 5, for example, or videos shown by the lecturer is not feasible in this way. So the general solution is to provide and integrate two video streams.

Integrating separate video streams proved to be difficult due to severe restrictions imposed by the tool used (Windows Media Player). The object model of this tool provides little of the func-tion-alit-y needed to run two videos in a synchronized manner. Even if more connection bandwidth is available than required by the sum of the bit rates of two video streams, one cannot expect that the bandwidth will be divided in proportion to the bit rates of the streams, nor even equally. The methods and properties available to the developer do not support tasks like control-ling the sta-ges of client-server interaction and (re-) distribut-ing connection band-width among two players adequately.

This shortcoming implies that two video files will rarely start playing simultaneously even if they have exactly the same parameters (e.g.

REFERENCES

Related Content

A Study on Bayesian Decision Theoretic Rough Set
www.irma-international.org/article/a-study-on-bayesian-decision-theoretic-rough-set/111309

Transactive Memory Systems
www.irma-international.org/chapter/transactive-memory-systems/112916

Deployment of Enterprise Architecture From the Activity Theory Perspective
www.irma-international.org/chapter/deployment-of-enterprise-architecture-from-the-activity-theory-perspective/184006

Particle Swarm Optimization from Theory to Applications
www.irma-international.org/article/particle-swarm-optimization-from-theory-to-applications/197378

A Study of Sub-Pattern Approach in 2D Shape Recognition Using the PCA and Ridgelet PCA