
Managing Modern Organizations With Information Technology 515

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Teaching Programming: The Shift from
Conventional to Student-Centred Approach

Matthew Butler

School of Multimedia Systems, Monash University, Clyde Rd., Berwick VIC 3806, Australia, matthew.butler@infotech.monash.edu.au

ABSTRACT
Educators are under constant pressure to update and adapt both their
teaching materials and methods, and for today’s teachers the focus is on
creating curriculum that is student-centred. Although almost all educa-
tors will acknowledge the necessity to put the needs of the students at
the forefront, as well as to tailor delivery based on the individual
requirements of the students, there is a tendency to believe that all
curriculum must have this focus. This paper will suggest that this should
not be the case, and that curriculum development for Programming
subjects must begin in a more “traditional” approach, before blossoming
into a student-centred, constructivist model.

INTRODUCTION
University educators are under constant pressure to update and adapt
both their teaching materials and methods. There is an obvious need to
revise curriculum based on conceptual and technological advancements
within the discipline, as well as societal shifts in the disciplines place in
the larger context. However the other element educators must take into
account is the continual evolution of the students in question.

Because of the disparate groups that exist within today’s student cohort,
notions of “Student-centredness” and “Student-centred learning” have
become prevalent in any discussion of tertiary curriculum development.
They are concepts that are now inherently expected to be adopted as
the only way to develop and deliver course material. As Gosling points
out in “A Handbook for Teaching and Learning in Higher Education”,
“Higher education no longer operates entirely on a teacher-centred
model of teaching and is shifting, albeit slowly and hesitantly, towards
a more student-centred model” (Fry et. al 2003, p. 163).

Although few educators will argue this as an overall philosophy,
regardless of their penchant for Objectivist or Constructivist ideals,
there appears to be a tendency to believe that all content development
and delivery must address the notions of student-centredness. The
author argues that although they agree with the fundamental principles
of this approach, there is also a need at times to provide a very focused,
explicit, delivery of core material, particularly in certain disciplines.

Using the learning and teaching of Programming as a basis, the author
will demonstrate that a successful student-centred approach to teaching
can at times stem only from a reasonably rigid (or “conventional”)
beginning to the subject. This case study will also highlight a need in the
development of Programming curriculum to not just consider individual
units in isolation, but to develop an entire structure, from introductory
level to advanced, to ensure that student needs are adequately addressed.

THE NATURE OF LEARNING PROGRAMMING
In order to use the teaching and learning of Programming as a case study,
we must first acknowledge the curriculum of the programming context.
To begin, the study of Programming Languages is, in general, the
learning of a particular Programming Language, be it Pascal, Visual

Basic, Java, or any other language. Martin (1996) and numerous other
authors suggest there are two distinct skills being developed in the
programmer:

• Problem solving, or logic skills
• Knowledge of a programming language

In order to develop these skills, the study of a programming language will
usually encompass:

• Background, principles, and general application of the language in
question

• Learning of the Programming Language syntax
• Specific development processes for the language
• Troubleshooting and testing techniques
• Creating programs using the language in question

For novice students, becoming familiar with programming principles is
the key to being able to embrace a programming language for the first
time. For the mathematically minded, the key concepts and structures
behind programming (such as the notions of sequence, selection, and
repetition) are a natural extension of the logical thought processes they
have developed in this other discipline. But for many, the mindset
required for programming is one that needs to be introduced and nurtured.
Broad conceptual ideas are somewhat replaced with strict methodologies.

The learning of the programming language syntax is obviously of key
importance, and similarly the focus on syntactic specifics depends on
the experience of the student. For those with no prior knowledge of the
language, the learning of the syntax can be a slow process that involves
a methodical approach of introducing new elements coupled with
significant basic application. For the veteran, more sophisticated
application of the language is the key, although this is still often coupled
with the introduction of new syntax. Where specific focus is placed in
the curriculum depends on the level of the subject. An introductory unit
will generally have more focus placed on the syntax of the language,
while at a higher level, where a knowledge of the bulk of the syntax has
been obtained previously, greater emphasis will be placed on learning
more specialised syntax, whilst primarily creating more sophisticated
programs using the language to its fullest capacities.

How does this differ to other disciplines? There is obviously a greater
focus on logical processing, troubleshooting, and general problem
solving. As Doube (1998) highlights ‘Introductory computer program-
ming subjects can be highly abstract and conceptual. They often aim to
promote the application of sound design and problem solving strate-
gies…’ (p. 86).

Aside from the obvious conceptual differences, within the Programming
context there is a need to be introduced to core programming concepts
as well as key syntax, before the student can perform any independent
application of concepts. Whereas many other disciplines encourage an
exploration of knowledge and concepts from day one, because the
concepts may have some basis in everyday experience, programming is

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP5240

IDEA GROUP PUBLISHING

This paper appears in Managing Modern Organizations Through Information Technology, Proceedings of the 2005 Information
Resources Management Association International Conference, edited by Mehdi Khosrow-Pour. Copyright 2005, Idea Group Inc.

516 2005 IRMA International Conference

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

a discipline that is often very new to many students. Logical and
mathematical problem solving techniques underpin programming, and
it is often that a student has not developed or applied these concepts
previously… at least in a similar context. As a result, there is a period of
familiarisation and understanding of these concepts that must take place.

The other obvious difference is in the need to learn and understand the
programming language itself. Although many other disciplines have a
lexicon that is required for meaningful conversation in the area, a student
can usually express their ideas in some way before becoming familiar with
the explicit language. For the programming student however, they
cannot “converse” in the programming environment until they have a
basic grasp of the syntax and semantics of the language.

LEARNING THEORIES IN THE PROGRAMMING
CONTEXT
Taking this into account, on what end of the teaching philosophy
spectrum does the teaching of programming languages exist? This can
be considered from a number of different perspectives, primarily
depending on the base theoretical model chosen, which as a result makes
it is difficult to espouse a definitive learning theory that applies
resolutely to the programming context. One can discuss the relative
merits of taking an objectivist approach, and likewise a constructivist
mentality can be validly argued. In fact there are times when both may
have a place in programming curricula. Leidner and Jarvenpaa (1995)
state resoundingly that “No particular model is the best approach” (p.
271).

Similarly, Eijkman discusses the work of Gundy, noting “three types of
human interests, which influence how knowledge is generated and
organised; the technical, practical and transformative”. On face value
the technical perspective may seem most appropriate; an orientation
that “reflects a distinctly technical, product-centred interest” (Eijkman
2004). However although for a programmer the end product is of the
utmost importance (and indeed in industry, is the journey rewarded?),
it could be argued that for the programming beginner, the importance
must be on developing sound methodological processes within the
student. Thus programming curriculum can become more akin to the
practical interest perspective, where students must explore their envi-
ronment, explore domains of knowledge, and make mistakes in the
process of gaining a deeper understanding of the discipline.

The work of Kolb also underscores that these apparent conflicts exist.
Healey and Jenkins (2000), in their discussion of Kolb’s work highlight
that “Some of the theory’s appeal is that it provides a rationale for a
variety of learning methods” (p. 186)

A more lateral approach to the application of learning theory to the
programming context may be to move away from approaches tradition-
ally aligned with technical disciplines, and to draw comparison to the
learning of spoken languages. This also becomes more likely when we
consider that the metaphors of “conversation” and “dialog” are now
commonplace within learning theory. For example, Applebee (1996)
suggests “A curriculum provides domains for conversation, and the
conversations that take place within those domains are the primary
means of teaching and learning” (p. 36).

A programming language, just like a spoken language, has not only a
syntactic element, of learning the actual “words”, but also a sematic
component, where the words must be placed together to have meaning.
Semantic understanding is a skill often developed in the introductory
units mentioned previously. It is of key importance that skills in this
area are developed as early as possible in the student to ensure success
both in the immediate language being learned, and also in the study of
future languages.

SHIFT FROM CONVENTIONAL TO STUDENT-
CENTRED
The discussion of the previous section alludes to the fact that just like
teaching in general, no one learning theory stands above the rest in the

programming context. It is clear that there is a large element that
revolves around the development of skills within practical application
of concepts learned. As the ethos of student-centred learning and
constructivist theory espouses, “Instruction must be concerned with the
experiences and contexts” (Kearsley, http://tip.psychology.org), where
students are required to make choices about what and how they learn.
However, can this exploration take place at an introductory program-
ming level without a strictly guided grounding in core concept? Can
fundamental core concepts be obtained by the student if they are given
the ability to freely roam the discipline from the beginning?

It is easy to dismiss the conventional approach as being an antiquated
approach to teaching, however based on the discussion above, it does
have merit. The conventional approach suggests that decisions regard-
ing curriculum and delivery are made by the teacher, whereas in student-
centred learning, the student is the one who makes choices about what
and how to learn. How does one make the decision what to learn if there
is no grounding yet in the fundamentals of a discipline? In order to
facilitate student-centred learning, the student must have a fundamental
grounding in the area of study, so they themselves can decide what is most
important. If the teacher has not provided the student a grounding in the
fundamentals of programming for example, the student cannot make
choices about the direction their study of programming should go, or in
what contexts they can apply it.

To many, programming is a new discipline and indeed a new language that
must be learned. Therefore as Applebee (1996) points out “Exploring
a topic in science, for example, involves using different rules of
argument and evidence than will be used in mathematics, and both will
differ from history” (p. 37), we cannot expect an introductory student
to be cognizant in the domain of programming without initial instruc-
tion.

Lemke (1994) strongly argues against any form of curriculum structure,
as far as hoping that “… the dominance of the Curricular Model of
education will be destroyed once and for all…” (p. 2). But even Lemke
acknowledges that “It is obviously true that the very youngest humans
need to learn the basic tools of the natural language and the cultural
categories of the society into which they are born in order to function…”
(p. 3). Although loathe to equate an introductory programming student
with a child, in many cases the programming student is in a similar
position. How do they function in an environment such as programming
with no frame of reference or formal introduction?

Indeed at a more advanced level students have the ability, and should
indeed be encouraged, to explore domains of knowledge. With an
understanding of the core concepts, basic syntax and its semantic
understanding, it must be up to the student to apply this to their own
frames of reference (in this case application of the language) and to take
it into new areas. The educator must be a facilitator in the student
learning new syntax and application.

Several learning theories concur with this view, if indirectly. Cross
discusses the characteristics of Adult as Learners, and although it can be
argued that the definition of adults is different in this context, elements
are still relevant. Cross argues that personal and situational character-
istics are variables in approaches to teaching and learning. If we consider
the previous contrast of introductory level students and advanced
student, then it is clear that both the type of student and the situation
they are in varies, so as a result we cannot pigeon-hole an overall
programming curriculum into being “traditional” or “student-centred”.
In fact Fenwick and Tennant (2004) in their discussion of Adult Learners
state that “… there is no one best way to understand learning, just as
learners and educators are each very different and constantly changing”
(p. 55).

Likewise, many of the learning theories that exist have context as a key
factor or variable. Kearsley (2004) points out that Spiro et al assert
“effective learning is context-dependant”, and although this means that
all teaching must be context-driven, it also infers that effective learning
must be tailored to the appropriate context, meaning that the context
for a first year is very different to that of a third year student. Do
introductory students even have a legitimate context?

Managing Modern Organizations With Information Technology 517

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

PROGRAMMING CURRICULUM DEVELOPMENT
What this discussion of both programming subjects in general and the
relevant learning theories highlights is that there is a need to consider
the overall learning process involved with a programming language and
therefore acknowledge that as curriculum developers we cannot focus
solely on one or a handful of likeminded learning theories. We must
embrace seemingly disparate theories and ideas.

Healey and Jenkins (2000) have already embraced this way of thinking.
As they point out “There is also evidence that learning styles are related
to the stage students are in their studies. Nulty and Barrett (1986) found
that students in their first third of studies adopted learning styles that
were similar to each other irrespective of main disciplines. However, the
learning styles of students in the final third of their studies tended to be
related to the discipline that was the primary focus of their studies.” (p.
189). This ideal must be incorporated into the development of Program-
ming curriculum.

Introductory Visual Basic .Net (VB .Net), as taught within the School of
Multimedia Systems at Monash University, is for many students their
first introduction to programming. As a consequence, the unit covers not
only learning of VB .Net for the first time, but programming concepts
in general. Curriculum for the unit therefore is a balancing act of
introducing language syntax, language semantics, programming con-
cepts (such as variables, programming structures, modularity), and
methodology.

As discussed previously, how can a student, exposed to programming for
the first time, be expected to self-explore programming domains with
any confidence? How can a student not be intimidated by crashing their
computer with an infinite loop, if they have no idea what has happened?
For these reasons, students deserve a well structured introduction to the
language, one where they are guided into the “domain of knowledge”.

This is not to say that the introductory levels must be devoid of any
constructivist ideals. Indeed, exploration within the tutorial setting is
essential to a deeper understanding of material. But this cannot be thrust
upon the student from day one… development must be nurtured. If the
introductory unit of VB .Net is considered to be a springboard to further
programming study, be it in VB or any other language, then this structure
is important.

As the study of the programming language progresses however, a distinct
shift in approach is required… a shift toward constructivist, or student
centred ideals. Once the student has a grounding in programming ideals
as well as the syntax, then the student can deepen their understanding
of the material. Bruner’s theory says that “the instructor should try and
encourage students to discover principles by themselves” (Kearsley,
http://tip.psychology.org/bruner.htm). Although this may seem at odds
with earlier discussion, particularly relating to the need to dictate fairly
explicitly what the students must learn, it can be said that this is to
introduce the concepts and provide a starting point for investigation…
they are indeed discovered and learned by the students with practical
application in tutorials and assignments.

This is not to suggest that students studying advanced programming have
free rein to wander the programming domain, clear learning objectives
are still needed. However the individual learning style of the student can
come to the fore, along with individual learning desires. This can be done
as both student and teacher can have comfort that the learning will not
be without purpose or grounding in fundamental principles. Exploration
can also become a more lateral process, yet still founded in fundamental
understanding.

So to ensure that the programming student is provided with the most
thorough and effective learning environment, the development of a
programming curriculum must consider both the introductory and
advanced context. Focus on solely an introductory level can deprive the
student of the ability to explore their new-found knowledge, providing
a valid argument against the objectivist approach. Similarly curriculum
for advanced concept cannot be considered in isolation. We must ensure
that students are not left to flounder with concepts that are completely
foreign, just for the sake of providing a constructivist approach, and

creating a “student-centred” environment… one that does not address
student needs after all.

CONCLUSION
It is unfair to disregard an objectivist mode of teaching, just because it
does not conform to current learning theory popularity or trend. At the
introductory level, a structured delivery of programming concept and
theory, programming structures, and specific syntax and semantic, must
be provided. Rather than allow students to wistfully find these concepts
for themselves, in the interest of both the students and providing a
framework for exploratory learning, the initial stages of programming
curriculum should conform to objectivist, or traditional, principles.

De Vita (2001) suggests that “Good practice must, therefore, translate
into using a variety of teaching styles and address each side of each
learning dimension at least some of the time” (p. 170). This is a
fundamental statement that underpins this discussion. As academics,
particularly in today’s teaching environment, it can be too easy to be
under the impression that all of our teaching must conform to entirely
“student-centred” approaches. Although it is essential that all our
teaching is indeed focused on the needs of the student, we cannot ignore
the need to provide basic guidance into the domains of knowledge.

As a result, in looking at the development of programming curriculum,
academics must consider the entire learning path of the student. Indeed
culminating in constructivist ideals, having the students dictate learning
approaches and directions, we must ensure that we address a central
question of Applebee (1996), that of “If students are to learn by doing,
how do schools avoid allowing them to wallow in their own ignorance?”
(p. 36). By providing some structured guidance in the beginning, the final
destination can be reached without this concern.

REFERENCES
Applebee, A. N (1996), Chapter 4: “Curriculum as Conversation”,

Curriculum as Conversation: Transforming Traditions of Teaching
and Learning, Chicago: University of Chicago Press

De Vita, G (2001), “Learning Styles, Culture and Inclusive Instruction
in the Multicultural Classroom: A Business and Management
Perspective”, Innovations in Education and Teaching Interna-
tional, 38(2), p. 165 - 174

Doube, W. (1998), “Multimedia delivery of computer programming
subjects: basing structure on instructional design”, The proceedings
of the third Australasian conference on Computer science educa-
tion, The University of Queensland, Australia

Eijkman, H. (2004) “Curriculum as social construction: three orienta-
tions to practice”, Monash University, HEDU

Fenwick, T. and Tennant, M. (2004), “Understanding Adult Learners”,
in Foley G. (ed) Dimensions of Adult Learning, Allen & Unwin:
Crows Nest NSW

Fry, H. Ketteridge, S. and Marshall, S. (2003) “A Handbook for Teaching
and Learning in Higher Education”, 2nd Edition, RoutledgeFalmer

Healey, M. and Jenkins, A. (2000) “Kolb’s Experiental Learning
Theory and its Application in Geography in Higher Education”,
Journal of Geography, September/October 2000; 99(5) ProQuest
Education Journals, p. 185

Kearsley, G (2004), “Explorations in Learning & Instruction: The
Theory Into Practice Database”, http://tip.psychology.org/ (ac-
cessed 06/06/2004)

Leidner, D. E and Jarvenpaa, S. (1995) “The Use of Information
Technology to Enhance Management School Education: A Theo-
retical View”, MIS Quarterly / September 1995, p. 265 - 291

Lemke, J.L (1994) “The Coming Paradigm Wars in Education: Curricu-
lum Vs Information Access”, http://academic.brooklyn.cuny.edu/
education/jlemke/papers/cfppaper.htm (accessed 02/06/2004)

Martin, J. L. 1996, ‘Is Turing a better language for teaching program-
ming than Pascal?’, http://www.holsoft.com/turing/essay.html,
(accessed 23/08/2002)

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/teaching-programming-shift-

conventional-student/32651

Related Content

A QoS-Enhanced Model for Inter-Site Backup Operations in Cloud SDN
Ammar AlSousand Jorge Marx Gómez (2019). International Journal of Information Technologies and

Systems Approach (pp. 20-36).

www.irma-international.org/article/a-qos-enhanced-model-for-inter-site-backup-operations-in-cloud-sdn/218856

Collaborative Environments Based on Digital Learning Ecosystem Approach to Reduce the

Digital Divide
José Eder Guzmán Mendoza, Jaime Muñoz Arteagaand Julien Broisin (2019). Educational and Social

Dimensions of Digital Transformation in Organizations (pp. 27-42).

www.irma-international.org/chapter/collaborative-environments-based-on-digital-learning-ecosystem-approach-to-

reduce-the-digital-divide/215134

Electronic Payment Frameworks
Antonio Ruiz-Martínez, Oussama Tounektiand Antonio F. Gómez Skarmeta (2018). Encyclopedia of

Information Science and Technology, Fourth Edition (pp. 2749-2760).

www.irma-international.org/chapter/electronic-payment-frameworks/183986

Modeling Uncertainty with Interval Valued Fuzzy Numbers: Case Study in Risk Assessment
Palash Dutta (2018). International Journal of Information Technologies and Systems Approach (pp. 1-17).

www.irma-international.org/article/modeling-uncertainty-with-interval-valued-fuzzy-numbers/204600

Understanding Cloud Computing in a Higher Education Context
Lucy Selfand Petros Chamakiotis (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 1153-1163).

www.irma-international.org/chapter/understanding-cloud-computing-in-a-higher-education-context/183827

http://www.igi-global.com/proceeding-paper/teaching-programming-shift-conventional-student/32651
http://www.igi-global.com/proceeding-paper/teaching-programming-shift-conventional-student/32651
http://www.irma-international.org/article/a-qos-enhanced-model-for-inter-site-backup-operations-in-cloud-sdn/218856
http://www.irma-international.org/chapter/collaborative-environments-based-on-digital-learning-ecosystem-approach-to-reduce-the-digital-divide/215134
http://www.irma-international.org/chapter/collaborative-environments-based-on-digital-learning-ecosystem-approach-to-reduce-the-digital-divide/215134
http://www.irma-international.org/chapter/electronic-payment-frameworks/183986
http://www.irma-international.org/article/modeling-uncertainty-with-interval-valued-fuzzy-numbers/204600
http://www.irma-international.org/chapter/understanding-cloud-computing-in-a-higher-education-context/183827

