
216 2005 IRMA International Conference

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

A Benchmark Comparison Between
Native XML and Relational Databases

Alexander van der Linden

University of Liverpool, Laureate Online Education BV, Arena Blvd. 61-75, 1011 DL Amsterdam ZO, The Netherlands,

s.van.der.linden@yourel.nl

Paul Darbyshire

School of Information Systems, Victoria University, PO Box 14428, Melbourne City MC, Victoria 8001, Australia,

paul.darbyshire@vu.edu.au

ABSTRACT
The growth of the Internet and of XML has dramatically affected the
way information is exchanged and combined. An indicator of the extent
is that every major database vendor has added XML support to their
product. XML is changing the way databases are used, often in ways that
database vendors would never have anticipated just a few years ago. Most
commercial relational, object-relational, and object-oriented database
systems offer extensions and other mechanisms to support the manage-
ment of XML data. In addition to supporting XML within existing
database management systems, we have seen the emergence of native
XML databases. These are designed for seamless storage, retrieval, and
manipulation of XML data and integration with related technologies,
and have been proposed as a solution to the complex storage of XML
structured data. While some researchers claim that native XML data-
bases will play a major role in the database world, others claim that as
soon as SQL databases have developed XML capabilities, native XML
databases will cease to exist due to poor performance. This paper
presents the results from a comparative investigation into the perfor-
mance of a relational database against an existing native XML database.
Benchmark tests are based on the XMark1 benchmark, are used to
compare the relative performance.

INTRODUCTION
As the use of XML has grown, it is now generally accepted that XML
is not only useful for describing new document formats for the Web but
is also suitable for describing structured data. Examples of structured data
include information that is typically contained in spreadsheets, program
configuration files, and network protocols. XML is preferable to
previous data formats because XML can easily represent both tabular
data (such as relational data from a database or spreadsheets) and semi-
structured data (such as a Web page or business document) (Obasanjo,
2003). Popular pre-existing formats such as comma separated value
(CSV) files either work well for tabular data and handle semi-structured
data poorly, or like RTF are too specialized for semi-structured text
documents. This has led to the widespread adoption of XML as the lingua
franca of information interchange.

As more and more organisations and systems employ XML within their
information management and exchange strategies, classical data man-
agement issues pertaining to XML’s efficient and effective storage,
retrieval, querying, indexing and manipulation arise. From this environ-
ment we have seen the emergence of native XML databases. These are
designed for seamless storage, retrieval, and manipulation of XML data
and integration with related technologies (Noordij, 2002). However, a
number of questions arise regarding Native XML Database (NXD) tech-
nology. Does it represent a paradigm shift? More importantly, is the
performance of NXD technology sufficient to provide an alternative to
standard database technology, or will coexistence be the status quo?

This paper reports on research conducted to test the relative perfor-
mance of comparable relational and native XML databases using
benchmarked time-trials. In the following sections, some background
information is given on native XML databases, their characteristics and
benchmarking,. The selection of a suitable relational database and native
XML database is then detailed, followed by a discussion on the construc-
t ion of the benchmark tests and then the presentation of the
benchmarking results. Finally, details of further research and some
conclusions are presented.

BACKGROUND
XML is rapidly becoming a standard in interchanging data via electronic
means and as the use of this file format is growing, there is a demand for
a structured approach when looking at data storage. As the XML file
format and its use differs somewhat from the standard relational database
approach, Native XML Databases (NXD’s) have been developed in
contrast. However there are many criticisms levelled against them,
chiefly their suitability for data storage and their performance in terms
of storage and retrieval.

Native XML Databases
Currently there is no formal, standard definition of an XML database
(Cox, 2001), however the XML:DB Initiative (www.xmldb.org) de-
scribes such a database as one that defines a logical model for an XML
document (not for the data in the document), and manages documents
based on that model. We can also consider the document itself as a
database (Udell, 2001). An XML document as a perfect container for
structured data, nodes and siblings acting as the counterpart of relational
database rows and columns.

Can an NXD be described as a database in the sense of a logical model
of structured data? Bourret describes it on a document level: “an XML
document is a database only in the strictest sense of the term; that is,
a collection of data” (Bourret, 2002). A more useful question to ask is
whether XML and its surrounding technologies constitute a “database”
in the looser sense of the term, that is, a database management system
(DBMS). XML and its related technologies provide many of the things
found in databases: storage (XML documents); schemas (DTD’s, XML
schemas); query languages (XQuery, XPath, XQL); programming inter-
faces (SAX, DOM, JDOM) (Staken, 2001).

A native XML database should define a logical model for an XML
document and have the document as the fundamental unit of storage
(Staken, 2001). Most NXD’s aren’t really standalone databases at all as
they don’t store the XML in true native textual format. But using a
relational DBMS to store XML documents can create serious perfor-
mance problems for large scale applications. Data hierarchy, context

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP5168

IDEA GROUP PUBLISHING

This paper appears in Managing Modern Organizations Through Information Technology, Proceedings of the 2005 Information
Resources Management Association International Conference, edited by Mehdi Khosrow-Pour. Copyright 2005, Idea Group Inc.

Managing Modern Organizations With Information Technology 217

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

and semantics are often lost when XML documents are retrieved and
processed with SQL (Liotta, 2003).

Benchmark ing
Basically, a benchmark is used to test the peak performance of a system.
Different aspects of a system have varying importance in different
domains. Hence it is important that a benchmark captures the charac-
teristics of the system measured. To be useful, a domain-specific
benchmark must meet four important criteria (Gray & Catell, 1993). It
must be able to measure the peak performance of systems when
performing typical operations within that problem domain; it should be
easy to implement the benchmark on many different systems and
architectures; it should be scalable; it should be understandable, otherwise
it will lack credibility. There are many domain-specific benchmarks. And
each of these is suitable for benchmarking elements of their own domain.

SQL domain benchmarks include:

• The Wisconsin benchmark is widely used to test the performance
of relational query systems on simple relational operators (Bitton,
DeWitt, & Turbyfill, Nov 1983).

• The AS3AP benchmark provides a more complete evaluation of
relational database systems by incorporating features such as
testing utility functions, mix batch and interactive queries (Turbyfill,
Sep. 1987).

• The Set Query benchmark is used for testing the ability of systems
to process very complex queries and is representative in data-
mining environments (O’Neil, 1993).

• TPC-D is used for on-line transaction processing (OLTP), and the
most recent TPC-W measures server-based transactions in E-
commerce environments (Anonymous, 1996).

The need for standard measures for XML data-processing environments
has led to the development of XML-specific benchmarks. These include:

• The XOO7 benchmark is an XML version of the OO7 Benchmark
with new elements and queries added to test the features that are
unique in XML. The XOO7 benchmark tests focus on the data-
centric query capabilities of object-oriented database systems
(Bressan, Lee, Li, Lacroix, & Nambiar, Nov 2001). However this
benchmark relies on an intricate Entity Relationship Diagram and
XML does not support such relationships.

• The XMach-1 Benchmark is a multi-user benchmark designed for
business-to-business applications and Web applications using XML
as follows (Böhme & Rahm, 2001a). This benchmark limits the
XML data to a simple structure. It supports both schema-based and
schema-less XMS and allows implementing some functionality at
application level.

• The XMark Benchmark consists of an application scenario that
models an Internet auction site and 20 XQuery challenges designed
to cover the essentials of XML query processing. The XMark
Benchmark is a perfect benchmark to test a complete system, with
front and back end, web-based (Schmidt et al., 2002).

The SQL domain benchmarks however, are not suitable for evaluating
XML storage in SQL systems. They lack the support of XML-specific
details, such as tree-traversing, parent-node navigation, structure pres-
ervation, decomposing and creation of XML documents. Comparing two
fundamentally different paradigms such as NXD and relational databases
requires a non-standard approach.

SELECTING SUITABLE TEST DATABASES
In order to study the behaviour of relational databases in comparison to
XML data, we have to select two databases. Given the constraints of the
testing hardware, these two databases needed to comply with the
following rules:

• Represent a functionally different technical paradigm(NXD and
Relational);

• Operate on an Intel/Windows platform (XP Professional)
• Experiencing an active lifecycle;
• Able to run stand-alone (no other software necessary).

The short lists of databases considered for selection is as follows:

Native XML Database Systems

• IPEDO by Ipedo (Commercial);
• Tamino by Software AG (Commercial);
• Exist by Exist Software (Open Source);
• Xindice (Open Source);
• X-Hive by X-Hive Corporation (Commercial).

XML Enabled Database Systems
• DB2 in combination with XML Extender by IBM (commercial);
• SQL Server 2000 by Microsoft (commercial)
• Oracle 9i by Oracle (commercial);
• Access 2003 by Microsoft (commercial, part of the Office Profes-

sional Suite).

Ipedo and Tamino are both sophisticated products, developed to act in
co-operation with other products to deliver professional XML support
on high volume transaction platforms. However, any attempt to run
these database management systems on a single PC will not lead to a
stable environment. Therefore, these databases do not comply with the
rules we have defined. eXist and Xindice are both products of the Open
Source community. Both products can handle the job well, though ease
of use and installation could be enhanced but an administrator utility is
not supported, which makes them unfit for the benchmark trials. X-Hive
is a professional product, with some very pleasant features and the
administrator utility supports XQuery queries and the response time is
measured. The X-Hive native XML database was chosen as subject for
the benchmark.

DB2 is a standard on many platforms and the new release Personal
Edition has the XML Extender, which enables XML support. However,
the installation of XML Extender unearthed some problems and a
running installation could not be established. Microsoft SQL server is
a standard on the Windows platform. Its support for XML looks very
promising, but unfortunately, SQL server can only be run form Microsoft
Server (NT/2000/2003). Microsoft Access is a standard on the PC/
Windows platform. As a single tier or multi-tier database (via ODBC)
the product has a long history of good performance. The 2003 edition
has some interesting features, concerning import and translation of
XML files and schemas. Microsoft Access fully complies with our rules
and was chosen as the subject for the benchmark

CONSTRUCTING A BENCHMARK
Benchmarking a native XML database and benchmarking a relational
database can’t be done with exactly the same benchmark, because of the
fundamental differences between the two platforms. A benchmark that
has the capabilities to evaluate the performance of both type of systems
can only be described on a meta-level. That is, the implementation of
the queries will be are different on every system. A relational database
uses relational tables and SQL as query language; a native XML database
uses collections and XML files as a single unit of storage and XQuery or
XPath as the query language.

We had to develop our own benchmark that would be relevant to XML
and Relational databases and some compromises had to be made. The
translation of part of the queries from XQuery to SQL had to me
manually performed. Additionally, Microsoft Access cannot automati-
cally translate the results of a query into XML, therefore only the
execution time of a query was measured. As a result of this, some queries
(producing structured XML data) had to be skipped on the SQL platform.
This is clearly indicated in the results.

The developed benchmark trials are based on the X-Mach1 Benchmark
by Böhme and Rahm (Böhme & Rahm, 2001b). This is a multi-user

218 2005 IRMA International Conference

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

benchmark designed for B2B applications and the XML Query Use Cases
(Chamberlin, Fankhauser, Florescu, Marchiori, & Robie, 2003). How-
ever, we did not focus on the multi-user component but concentrated on
the special properties of the X-Mach1 benchmark for a single-user
issuing queries form a local machine. The XMach-1 benchmark limits
the XML data to be simple of data-structure and small in size. This suits
perfectly well the limitations posed by the test platform. Additionally,
the choice was made easier by the relatively easy implementation, the
scalability and the fact that the queries were developed with the single
user in mind.The XML use Case Queries are composed of 5 sets of queries,
composed in XQuery format. These are:

• Standard queries: tests for the ability of the database to produce
standard formatted output, based on a simple ‘select for’ clause.
The query consists of 12 different queries.

• Hierarchical: this query tests the ability of the database to preserve
the original hierarchical tree in the XML documents. The total test
consists of 6 different queries.

• Sequential: although sequence is not significant in most traditional
database systems or object systems, it can be quite significant in
structured documents. The total test consists of 5 queries.

• Relational: one important use of XML will be the storage of
relational data. This query describes a possible way in which this
access might be accomplished. The target data consists of 3 linked
tables. The total test consists of 18 queries.

• String: this query tests for simple string search in long structured
documents, but it makes use of comparison of strings. The total test
consists of 5 queries.

To test the behaviour of loading and parsing, a 6th test was added, which
loads 2 different XML documents, with a 132 Kbyte and 1.32 Mbyte file
size. The native XML database must read and parse the nodes of the
document object model and display them. The relational database has
to read the XML file and convert it into relational tables. The XML
documents and DTD’s are provided by the W3C Consortium. Every
query set was run 10 times in order to achieve a good average and to omit
start-up problems like pre-reading indices, buffering tables etc. X-Hive
provides an administration utility that allows for XQueries to be run.
After processing a query, the total processing time is displayed with the
results.

The XML data which was used by the queries running on the X-Hive
native XML database was imported into Access 2003 and relations
between tables were created. The following step was to convert the
XQuery commands into SQL. As the XQuery commands used in the
benchmark were not very complicated this was not a major undertaking.
To obtain the processing time of each query a small function was written
in VBA (Visual Basic for Applications) which showed the processing time
after the display of the query results. All the queries (for both native
XML and relational database) were run in single user mode, on a 2.4 Mhz

Pentium IV PC fitted with 512 Mb of RAM, a 120 Gb hard disk and
Windows XP Home edition as operating system.

RELATIVE COMPARISONS
In this section we have shown the results of the benchmark applied
against the native XML database and against the relational database. A
comparative chart is then used to highlight the differences.

Figure 1 shows the average scores calculated from all passes for all query
types of the benchmark tests for the X-Hive database. This diagram is
created by taking the absolute values of every query of the different types
and converting them to averages for every pass. Every query type is
represented by a different colour, as shown in the legend. As the different
parts of the benchmark consist of an unequal amount of queries,
producing a coherent diagram is not possible.

Obvious is the overall average scores which stay in a 50 milliseconds
bandwidth. All scores stay below a 60 millisecond border, except for the
Sequence, pass 1, which took 170 milliseconds. Even the Relational part,
where one should expect some difficulties as real relationships do not
exist in native XML databases, and various physical files must be
accessed, the score showed no significant deviation.

Microsoft Access has 2 different modes supporting queries, in the SQL
window, or with the help of the query builder. If the latter is chosen, the
query is automatically translated into SQL. The Hierarchical query of
the benchmark was not applicable to Access, as Access cannot produce
XML output automatically and directly from within a query. To do so,
a report has to be defined and exported to XML, which is technically
feasible. This action has not been taken into account.

Figure 2 shows the average scores calculated from all passes for all query
types (except hierarchical), of the benchmark tests for the MS Access
database. All the queries run in Access stay below a 10 millisecond border,
which is significantly faster then X-Hive. Access shows a more incoher-
ent behaviour compared with X-Hive. The Relational query showed
some higher values when a particular query was executed (inner join).

Figure 1. Average Scores for X-Hive Benchmark

Figure 2. Average Scores for MS Access Benchmark

Table 1. Comparative Times for Benchmark of Native XML vs Relational
Database

Query Type X-Hive Access 2003

Standard 28.48 5.37
Hierarchy 16.73 N/A
Sequence 34.35 4.85
Relational 22.02 4.69
Full string 26.63 3.50

Managing Modern Organizations With Information Technology 219

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

The XML data is read and converted automatically into tables. This
imposed no problem as the XML data for the benchmark consists of
single files. The import of relational XML data, where separate XML
files are related, is disappointing. Access is able to read the relationships
out of the W3C consortiums compatible schema and creates the
different tables and keys, but does not provide the relationship itself.
This needed human intervention. The relationships have been con-
verted into 3rd normal form.

Table 1 shows averaged comparative times over all passes for the
different query types of the native XML and relational databases. These
are represented graphically in Figure 3.

CONCLUSION
Given the results of the benchmark trials presented in the previous
section there is a significant difference between native XML and
relational SQL. Access does run the equivalent of the XQuery queries
much faster than X-Hive. This nis of course except for the Hierarchical
queries. These could not be converted as SQL does not support the count
of XML-elements and the converted XML data exists in tables not
identifiable as XML data anymore. Access is on average about 6.17 times
faster than X-Hive in in all query types.

We can further conclude that XML, converted (or scattered) into
relational tables can be accessed much faster (about 7 times faster) than
the native XML counterpart, provided that the data has not to be
presented in its native format. However, that be a concern only if the
relational database is part of a ‘chain’ in which XML is the native format
such as in Web applications. In legacy systems, where XML is only of
any importance as intermediate format (middleware), this should be not
of any problem.

Currently is seems that the relational database is very well suited for
handling XML data, provided that the XML contents/structure is
mapped adequately to the applicable tables, rows and columns and that
relationships between the tables are established in a proper way. If
developers of relational database systems can further enhance the XML
functionality, in a sense that handling XML data does not demand an in-
depth knowledge of XML as architecture and/or the structure of the

applicable XML data, relational SQL databases provide all the necessary
functionality needed.

An interesting area for future research would be the applicability of
Object Oriented Databases for storing XML documents. We have
ignored then in this study, but they may well be better equipped to serve
as prime storage for XML documents.

ACKNOWLEDGEENTS
This research project was undertaken as part of a Master of Science
degree with University of Liverpool and Laureate Online Education.

REFERENCES
Anonymous. (1996). . TPC-D Benchmark Specification, Version 1.2.

Transaction Processing Performance Council
Bitton, D., DeWitt, D., & Turbyfill, C. (Nov 1983). Benchmarking

Database Systems, a Systematic Approach. Paper presented at the
Ninth International Conf. on Very Large Data Bases,

Böhme, T., & Rahm, E. (2001a). Multi-User Evaluation of XML Data
Management Systems with XMach-1. University of Leipzig, Ger-
many.

Böhme, T., & Rahm, E. (2001b, 2001). XMach-1: A Benchmark for XML
Data Management. Paper presented at the BTW 2001, Oldenburg.

Bourret, R. (2002). XML and databases, from http://www.rpbourret.com
Bressan, S., Lee, M. L., Li, Y. G., Lacroix, Z., & Nambiar, U. (Nov 2001).

The XOO7 XML Management System Benchmark (No. Technical
Report TR21/00): NUS CS Dept.

Chamberlin, D., Fankhauser, P., Florescu, D., Marchiori, M., & Robie,
J. (2003). XML Query Use Cases. W3C Consortium, from http://
www.w3.org/TR/xquery-use-cases

Cox, J. (2001). Working out the bugs in XML databases. Network World
Fusion, vol . ht tp:/ /www.nwfusion.com/news/2002/
0107specialfocus.html

Gray, J., & Catell, R. (1993). The Benchmark Handbook: Morgan
Kaufmann Publishers Inc.

Liotta, M. (2003). XML and Relational Databases. Montara Software,
Inc., from http://www.montarasoftware.com/go/de2de519-322f-
1157-993a-b103537bde48

Noordij, M. (2002). The benefits of XML database. Computable (Dutch
version), vol, 51.

Obasanjo, D. (2003). Understanding XML. Microsoft Developers Net-
work, from http://msdn.microsoft.com/library/default.asp?url=/
library/en/dnxml/html/UnderstXML.asp

O’Neil, P. (1993). The Set Query Benchmark. The Benchmark Hand-
book For Database and Transaction Processing Systems. (2nd ed.):
Morgan Kaufmann.

Schmidt, A., Waas, F., Kersten, M., , C., M., , M., I., & Busse, R. (2002).
XMark: A Benchmark for XML Data Management. Paper presented
at the 28th VLDB Conference, Hong Kong (SAR CHina),

Staken, K. (2001). Introduction to Native XML Databases. O”Reilly &
Assoc. , from http:/ /www.xml.com/pub/a/2001/10/31/
nativexmldb.html

Turbyfill, C. (Sep. 1987). Comparative Benchmarking of Relational
Database Systems, Ph. D. Dissertation. Cornell University

Udell, J. (2001). The document is the database. O’Reilly and Associates,
from http://www.xml.com/pub/a/2003/07/09/udell.html

Figure 3. Comparative Bar Graph of Overall Times for X-Hive vs Access

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/benchmark-comparison-between-

native-xml/32578

Related Content

Using Wiki for Agile Software Development
Pankaj Kamthanand Nazlie Shahmir (2015). Encyclopedia of Information Science and Technology, Third

Edition (pp. 7400-7408).

www.irma-international.org/chapter/using-wiki-for-agile-software-development/112437

International Digital Studies: A Research Approaches for Examining International Online

Interactions
Kirk St. Amant (2004). Readings in Virtual Research Ethics: Issues and Controversies (pp. 317-337).

www.irma-international.org/chapter/international-digital-studies/28306

Improving Health Care Management Through the Use of Dynamic Simulation Modeling and

Health Information Systems
Daniel Goldsmithand Michael Siegel (2012). International Journal of Information Technologies and Systems

Approach (pp. 19-36).

www.irma-international.org/article/improving-health-care-management-through/62026

Method of Fault Self-Healing in Distribution Network and Deep Learning Under Cloud Edge

Architecture
Zhenxing Lin, Liangjun Huang, Boyang Yu, Chenhao Qi, Linbo Pan, Yu Wang, Chengyu Geand Rongrong

Shan (2023). International Journal of Information Technologies and Systems Approach (pp. 1-15).

www.irma-international.org/article/method-of-fault-self-healing-in-distribution-network-and-deep-learning-under-cloud-

edge-architecture/321753

Color Coding for Data Visualization
Simone Bianco, Francesca Gaspariniand Raimondo Schettini (2015). Encyclopedia of Information Science

and Technology, Third Edition (pp. 1682-1691).

www.irma-international.org/chapter/color-coding-for-data-visualization/112573

http://www.igi-global.com/proceeding-paper/benchmark-comparison-between-native-xml/32578
http://www.igi-global.com/proceeding-paper/benchmark-comparison-between-native-xml/32578
http://www.irma-international.org/chapter/using-wiki-for-agile-software-development/112437
http://www.irma-international.org/chapter/international-digital-studies/28306
http://www.irma-international.org/article/improving-health-care-management-through/62026
http://www.irma-international.org/article/method-of-fault-self-healing-in-distribution-network-and-deep-learning-under-cloud-edge-architecture/321753
http://www.irma-international.org/article/method-of-fault-self-healing-in-distribution-network-and-deep-learning-under-cloud-edge-architecture/321753
http://www.irma-international.org/chapter/color-coding-for-data-visualization/112573

