
118 2005 IRMA International Conference

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Foundations of Component-Based
Development and MDA

Liliana Favre

Universidad Nacional del Centro de la Provincia de Buenos Aires, CIC, Argentina, lfavre@exa.unicen.edu.ar

ABSTRACT
The Model Driven Architecture (MDA) is a recent approach to model-
centric software development. Techniques that currently exist in MDA-
based Case tools provide little support for dealing with component–
based reuse. In this paper, we describe a metamodeling technique to reach
a high level of reusability and adaptability of MDA components. A
framework for defining reusable components from a MDA perspective
is described. We propose to integrate Platform Independent Model
(PIM), Platform Specific Models (PSMs) and code models with their
respective metamodels. We propose a combination of UML/OCL
metamodels with formal specifications. We use the intermediate nota-
tion called NEREUS (which is suited for metamodeling) and a system of
transformation rules to translate UML/OCL into NEREUS. We address
software reuse using metamodel/model transformations among PIM,
PSMs and code models.

INTRODUCTION
The Model Driven Architecture (MDA) is a recent initiative of the
Object Management Group (OMG). MDA is emerging as a technical
framework to improve productivity, portability, interoperability, and
evolution. It provides a technical framework for information integra-
tion and tools interoperation based on the separation of Platform
Specific Models (PSM) from Platform Independent Models (PIM)
(MDA, 2004).

MDA supports the development of software systems through the
transformation of models to executable components and applications.
Its success depends on the definition of transformation languages and
component libraries that make a significant impact on tools that provide
support for MDA. The tool market around MDA is still in flux; MDA
is a young approach and several technical issues are not adequately
addressed.

Techniques that currently exist in UML Case tools do not provide
adequate support for dealing with component–based reuse and MDA.
Reusable components that will be used in a process based on MDA have
also to be described in different abstraction levels. In the light of the
MDA paradigm a new type of reusable components that allow a more
automatic job might emerge.

Developing reusable components requires a high focus on software
quality. The traditional techniques for verification and validation are
still essential to achieve software quality. The formal specifications are
of particular importance for supporting testing of applications, for
reasoning about correctness and robustness of models and for generating
code “automatically” from abstract models. In this direction, we define
a framework for reuse that integrates formal specifications, UML/OCL
specifications and implementations.

We propose three different types of models: Platform Independent
Component Model (PICM), Platform Specific Component Model
(PSCM) and Implementation Component Model (ICM). Reusability is
based on reuse operators for adding, removing or changing parts of
components.

Metamodeling plays a key role in the new MDA paradigm. The
formalization of metamodels can help us to address component based
development in the context of MDA. We define the NEREUS language

to cope with concepts of UML metamodels. NEREUS is relation-
centric, that is it expresses different kinds of relations (dependency,
association, aggregation, composition) as primitives to develop speci-
fications. NEREUS is aligned with MDA. It can be viewed as an
intermediate notation open to many other formal languages. Then, it
allows the construction of high-level specifications that are developed
independently of a particular formal language and could be translated to
different ones.

We define PICMs, PSCMs and ICMs in a common metamodeling
framework based on UML/OCL and NEREUS. One of the key features
is the notion of metamodel mappings among PICM, multiple PSCMs and
ICMs. Metamodeling allows us to check models against a set of rules to
ensure that reuse operators are suitable for use in a transformation.

The structure of the rest of this paper is as follows. Section 2 describes
the MDA paradigm. Section 3 describes the NEREUS language. Section
4 presents a framework for defining reusable components. Section 5
describes related work. Finally, Section 6 concludes and discusses further
work.

THE MDA PARADIGM
The MDA strategy imagines a world where models play an important role
in software development. All artifacts such as requirements specifica-
tion, architecture descriptions, design descriptions and code, are re-
garded as models.

In MDA, one of the key features is the notion of automatic transfor-
mations that are used to modify one model in order to obtain another
model. The Model-Driven development is divided into three main steps:

• Construct a model with a high level of abstraction that is called
Platform Independent Model (PIM).

• Transform the PIM into one or more PSMs; each one suited for
different platforms, e.g., .NET (Meyer, 2001) or J2EE (Java,
2004) .

• Transform the PSMs to code.

A transformation describes how a model in a source language can be
transformed into a model in a target language. The PIM, PSMs and code
describe a system in different levels of abstraction. UML combined with
OCL is the most widely used way for writing either PIMs or PSMs. Figure
1 shows the major steps in the MDA development process.

The mapping from one PIM to several PSMs is the core of MDA. The
success of MDA depends on the definition of transformation languages

 PIM

PSM-J2EE PSM-REL PSM-.NET

CODE CODE CODE

Figure 1. The Model-Driven Paradigm

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP5144

IDEA GROUP PUBLISHING

This paper appears in Managing Modern Organizations Through Information Technology, Proceedings of the 2005 Information
Resources Management Association International Conference, edited by Mehdi Khosrow-Pour. Copyright 2005, Idea Group Inc.

Managing Modern Organizations With Information Technology 119

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

and tools that make a significant impact on full forward engineering
processes.

Metamodeling is a key facility in the new MDA paradigm. The UML
specification is defined using a metamodeling approach. The
metamodeling framework for the UML is based on an architecture with
four layers: meta-metamodel, metamodel, model and user objects.
Related metamodels and meta-metamodels such as MOF (Meta Object
Facility), SPEM (Software Process Engineering Metamodel) and CWM
(Common Warehouse Model) share common design philosophies and
are defined on the same layered architecture (OMG, 2004).

Languages for expressing UML-based metamodels provide a visual
concrete syntax and an abstract syntax consisting of UML class diagrams
and OCL constraints to rule out invalid combinations of model elements.
They are based at least on three concepts (entity, association and
package) and a set of primitive types.

UML is itself defined as an instance of MOF metamodel. MOF is still
evolving and has some limitations. It does not allow capturing semantic
properties in a platform independent way. Currently OMG is working on
the definition of the QVT (Query, View, Transformations) standard for
expressing transformations as an extension of MOF (OMG, 2004).

FORMALIZING METAMODELS
The formalization of metamodels can help us to address MDA. A formal
specification clarifies the intended meaning of metamodels, helps to
validate them and provides reference for implementation.

We propose the NEREUS language for specifying metamodels based at
least on the concepts of entity, associations and packages. UML
metamodel and NEREUS share a common design philosophy. NEREUS
is relation-centric, that is it expresses different kinds of relations
(dependency, association, aggregation, composition) as primitives to
develop specifications.

NEREUS is an intermediate notation open to many other formal
languages. In particular, we define its semantics by giving a precise
formal meaning to each of the constructions of the NEREUS in terms
of the CASL language that has been developed as the centerpiece of a
standardized family of specification languages (Bidoit & Mosses, 2004).

Section 3.1. describes shortly the NEREUS language. A bridge between
UML/OCL and NEREUS is described in Section 3.2.

The NEREUS Language
NEREUS consists of several constructions to express classes, associations
and packages. The syntax of a basic specification is shown in Figure 2.

NEREUS distinguishes variable parts in a specification by means of
explicit parameterization. The IMPORTS clause expresses clientship
relations. The specification of the new class is based on the imported
specifications declared in <importList> and their public operations may
be used in the new specification.

NEREUS distinguishes inheritance from subtyping. Subtyping is like
inheritance of behavior, while inheritance relies on the module view-
point of classes. Inheritance is expressed in the INHERITS clause, the

specification of the class is built from the union the specifications of the
classes appearing in the <inheritsList>.

Subtypings are declared in the IS-SUBTYPE-OF clause. A notion closely
related with subtyping is polymorphism, which satisfies the property
that each object of a subclass is at the same time an object of its
superclasses. NEREUS allows us to define local instances of a class in the
IMPORTS and INHERITS clauses.

NEREUS distinguishes deferred and effective parts. The DEFERRED
clause declares new sorts or operations that are incompletely defined.
The EFFECTIVE clause either declares new sorts or operations that are
completely defined, or completes the definition of some inherited sort
or operation.

Operations are declared in FUNCTIONS clause. NEREUS supports
higher-order operations (a function f is higher-order if functional sorts
appear in a parameter sort or the result sort of f). In the context of OCL
Collection formalization, second-order operations are required. In
NEREUS it is possible to specify any of the three levels of visibility for
operations: public, protected and private.

NEREUS provides the construction LET… IN.. to limit the scope of
the declarations of auxiliary symbols by using local definitions.

NEREUS provides a taxonomy of constructor types that classifies
binary associations according to kind (aggregation, composition, asso-
ciation, association class, qualified association), degree (unary, binary),
navigability (unidirectional, bidirectional), connectivity (one-to one,
one-to-many, many-to-many). New associations can be defined by the
syntax shown in Figure 2. The IS clause expresses the instantiation of
<constructorTypename> with classes, roles, visibility, and multiplicity.
The CONSTRAINED-BY clause allows the specification of static
constraints in first order logic.

The package is the mechanism provided by NEREUS for grouping classes
and associations and controls its visibility (Figure 2). Several useful
predefined types are offered in NEREUS, for example Collection, Set,
Sequence, Bag, Boolean, String, Nat and enumerated types.

Figure 3 shows a simplified UML metamodel and its specification in
NEREUS.

A Bridge Between UML/OCL and NEREUS
We define a bridge between UML/OCL and NEREUS. The text of the
NEREUS specification is completed gradually. First, the signature,
axioms and associations are obtained by instantiating reusable schemes.
Finally, OCL specifications are transformed using a set of transforma-
tion rules.

Analyzing OCL specifications we can derive axioms that will be included
in the NEREUS specifications (OCL, 2004). Preconditions written in
OCL are used to generate preconditions in NEREUS. Postconditions and
invariants allow us to generate axioms in NEREUS.

A detailed description may be found in Favre (2001), Favre, Martinez
and Pereira (2003). Favre (2005) describes transformations in the
context of a MDA-based forward engineering process. Figure 4 shows
some OCL expressions, some rules of the transformation system and
their application to transform the OCL expressions into NEREUS.

REUSABILITY AND MDA
Most current approaches to reusability in the context of MDA are based
on empirical methods focusing on reuse of code models. However the
most effective forms of reuse are generally found at more abstract levels
of design. Reusability is difficult because it requires taking many
different requirements into account, some of which are abstract and
conceptual, while others such as efficiency, are concrete. A good
approach for reusability must reconcile them. This work proposes a
framework for defining reusable components that integrate high level
specifications which are independent of any implementation technol-
ogy, specifications targeted at different platforms and implementa-
tions. This approach is based on the integration of semi-formal nota-

Figure 2. The NEREUS Language: Its Syntax

 CLASS className [<parameterList>]
IMPORTS <importList>
INHERITS <inheritsList>
IS-SUBTYPE-OF <subtypeList>
ASSOCIATES <associatesList>
DEFERRED
TYPES <typeList>
FUNCTIONS <functionList>
EFFECTIVE
TYPES <typeList>
FUNCTIONS <functionList>
AXIOMS <varList>
<axiomList>
END-CLASS

ASSOCIATION <relationName>
IS <constructorTypeName> [... : class1; . .. :class2;
. .. : role1; ...: r ole2;. .. : mult1; . .. : mult2; . .. : visibility1;
. .. : visibility2]
CONSTRAINED BY <constraintList>
END

PACKAGE <packageName>
IMPORTS <importsList>
INHERITS <inheritsList>
<elements>
END-PACKAGE

120 2005 IRMA International Conference

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

tions in UML/OCL with algebraic specifications. We define components
in three different levels of abstraction: Platform Independent Compo-
nent Model (PICM), Platform Specific Component Model (PSCM) and
Implementation Component Model (ICM). Component models fit
MDA very closely: PICM, PSCM and IMC are related to PIM, PSMs and
code respectively (Figure 5).

The PICM defines component models with a high level of abstraction,
which are independent of any implementation technology. Every PICM
is related to more than one PSCM, each one suited for a different
technology. Every PSCM includes subcomponents related to different
realizations of the PICM. Every specification at the PSCM level
corresponds to a subcomponent at the IMC level, which groups a set of
implementation schemes associated with a specific technology.

We are experimenting with PICMs defined as UML static models that
can be manipulated by means of reuse operators, for example:

Rename_Package: changes the names of classes or associations.
Rename-class: changes the names of types or operations
Hide-class/ hide_package: forgets those parts of a specification that are

not necessary for the current application
Extend-class: adds types and operations to a class

Extend-package: adds classes and/or associations to a package
Combine: combine two or more parts in only one

We define reuse transformations by mappings between PIMs, PSMs, and
code models. We have experimented with code models in Eiffel and Java.
The reuse transformations are formalized in OCL and NEREUS. We
propose to define a transformation rule by its name, a source model
element, a target model element, a source condition and a target
condition. The source and target conditions are Boolean expressions
that impose some relations between the target and source model
elements. These transformations are declarative and can be used in the
specification stages to check models against a set of rules to ensure that
reuse operators are suitable for use in a transformation.

RELATED WORK
Meyer (2003) discusses the concept of Trusted Components, “a reusable
software element possessing specified and guaranteed property quality”.
The paper examines a first framework for a Component Quality Model.

Component-based approaches have been proposed to reuse (Bachmann
et al., 2000; D’Souza & Wills, 1999; Szyperski, 1998). Several UML-

Figure 3. A Simplified UML Metamodel and Its NEREUS Specification

 ownerPack

associationE

Association
End

name:String
upperbound: Int
lowerbound:Int
nt

* *

*

Class

name:String

 source

 1

* sourceof 1

 otherEnd

allParent
s

parents

Association

name:String

Package

name:String

1 target

*

targetof

2 owner
1

*

association

owner
1

class owner

* 1

allNested * 0..1

associationEnd

PACKAGE AbstractSyntax
CLASS C_Class
ASSOCIATES << A_parents>>,
<< A_allParents>>, << A_source>>,
<< A_target>>, << Class_Package>>,
…
FUNCTIONS
name: C_Class -> String
…
END-CLASS
CLASS C_Package
ASSOCIATES << Association_Package>>,
 << Class_Package>>,
<< A_allNested>>, <<A_ownerPack>>
…
FUNCTIONS
name: C_Package -> String
…
END-CLASS
CLASS C_Association
ASSOCIATES << Association_Package>>,
<< Association_AssociationEnd>>
…
FUNCTIONS
name: C_Association -> String
…
END-CLASS
CLASS C_AssociationEnd
ASSOCIATES << A_otherEnd>>,
<< Association_AssociationEnd>>,

<< A_source>>, << A_target>>
…
FUNCTIONS
name: C_AssociationEnd -> String
upperbound: C_AssociationEnd -> Int
lowerbound: C_AssociationEnd -> Int
…
END-CLASS
ASSOCIATION A_parents
IS Unidirectional-2 [C-Class:class1;
C_Class:class2; class:role1;
parents: role2; 1: mult1; *: mult2;
+:visibility1; +:visibility2]
END
ASSOCIATION A_allParents
ASSOCIATION A_source
ASSOCIATION A_target
ASSOCIATION Class_Package
IS Bidirectional-1 [C-Class:class1;
C_Package:class2;class:role1;
owner: role2; *: mult1; 1: mult2;
+:visibility1; +:visibility2}
END
ASSOCIATION Class_AssociationEnd…
ASSOCIATION A_otherEnd…
ASSOCIATION Association_Package…
ASSOCIATION A_allNested…
ASSOCIATION A_owner
…
END-PACKAGE

Managing Modern Organizations With Information Technology 121

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

based metamodeling approaches have been proposed (Baumeister et al.,
2001; Bezivin et al., 2003; Dong, Alencar & Cowan, 2003; Gogolla et
al., 2002; McUmber & Cheng, 2001). Bettin (2003) summarizes lessons
from several projects related to component-based development and
MDA. The paper examines the pragmatic use of today’s MDA tools.

To date, few tools provide support for MDA paradigm, for example
AndroMDA, AMEOS, CodagenArchitect, OptimalJ, ArcStyler (UML
Tools, 2004). The existing MDA-based tools do not provide sophisti-
cated transformations from PIM to PSMs. These kinds of transforma-
tions might be supported by libraries of reusable components.

The following differences between our approach and some existing ones
are worth mentioning. Our motivation is to integrate MDA with
knowledge developed by the formal methods community.

There are UML formalizations based on different languages that do not
use an intermediate language. However, this extra step provides some
advantages. NEREUS would eliminate the need to define formalizations
and specific transformations for each different formal language. NEREUS
would also allow us to take advantage of all the existing theoretical
background on formal methods, using different tools such as theorem
provers, model checkers or rewrite engine in different stages of MDD.

Languages that are defined in terms of NEREUS metamodels can be
related to each other because they are defined in the same way through
a textual syntax.

CONCLUSIONS AND FUTURE WORK
We define a framework that integrates UML/OCL specifications, formal
specifications and code from a MDA perspective. Our main contribution
is a metamodeling approach to define reusable components. We propose
three different types of models: Platform Independent Component
Model (PICM), Platform Specific Component Model (PSCM) and
Implementation Component Model (ICM). We propose bridges amongst
PICM, multiple PSCMs and IMCs based on metamodel mappings. We
define specific reusable components for Associations, OCL collections
and design patterns.

We introduce the NEREUS language to cope with concepts of UML
metamodel. A transformational system to translate OCL to NEREUS
was defined. The concept of MDA components aims at providing
support for integration and interoperability and the ability to migrate
to new platforms and technologies as they become available. In Favre
(2005) we describe how to forward engineering UML static models to
Eiffel code in a MDA perspective.

An important problem associated with reusability techniques is how to
identify components in a library. For reuse to be effective, it must be
less expensive to identify a component than to construct it. Directions
for future work include finding more practical ways to match specifica-
tions. The bases of the matching come from Zaremski (1997), even
though they might be adapted to the identification of NEREUS speci-
fications. Also, we foresee to analyze criteria against which to assess
components. We foresee to integrate our results in the existing UML
CASE tools and experiment with different platforms such as .NET and
J2EE.

REFERENCES
Bachmann, F., Bass, L., Buhman, S., Comella-Dorda, S., Long, F.,

Seacord, R. & Wallnau, K. (2000). Technical Concepts of Compo-
nent-Based Software Engineering, Vol. II, CMU/SEI-2000-TR-
008, Software Engineering Institute, Carnegie Mellon University.

Baumeister, H., Hennicker, R., Knapp, A. & Wirsing, M. (2001). OCL
Component Invariants. GI Jahrestagung (1), 600-607.

Bettin, J. (2003). Practicalities of Implementing Component-Based
Development and Model-Driven Architecture. Proc. Workshop
Process Engineering for Object-Oriented and Component-Based
Development, OOSPLA 2003, USA.

Bezivin, J., Gerard, S., Muller, P. & Rioux, L. (2003). MDA Compo-
nents: Challenges and Opportunities. Proc. Metamodeling for
MDA, First International Workshop, York, UK.

Bidoit, M. & Mosses, P. (2004) CASL User Manual - Introduction to
Using the Common Algebraic Specification Language. Lecture
Notes in Computer Science 2900. Springer.

Dong, J., Alencar, P. & Cowan, D. (2003). A Formal Framework for
Design Component Contracts, Proc. of the IEEE International
Conference on Information Reuse and Integration (IRI), Las
Vegas, USA, 53-60.

D´Souza, D. & Cameron Wills, A. (1999). On Components, and
Framework with UML. Addison-Wesley.

Favre, L. (2005). Foundations for MDA-based Forward Engineering.
Journal of Object Technology (JOT) ETH Zurich, Chair of Soft-
ware Engineering, Vol. 4, no 1, January-February.

Favre, L. (2001). A Formal Mapping between UML Static Models and
Algebraic Specifications. (Evans, A. France, R., Moreira, A. &
Rumpe, B. eds). Practical UML-Based Rigorous Development
Methods-Countering or Integrating the eXtremist, Lecture Notes
in Informatics (P 7) SEW, GI Edition, Alemania, 113-127.

Favre, L, Martínez, L. & Pereira, C. (2003). Forward Engineering and
UML: From UML Static Models to Eiffel Code. In Favre, L (Ed)
UML and the Unified Process Chapter IX, IRM Press, USA, 199-
217.

Figure 4. From UML/OCL to NEREUS: A System of Transformation
Rules

122 2005 IRMA International Conference

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Gamma, E., Helm, R., Johnson, R. &Vlissidies, J. (1995) Design
Patterns- elements of Reusable Object-Oriented Software, Addison-
Wesley.

Gogolla, M., Lindow A., Richters M. & Ziemann P. (2002). Metamodel
Transformation of Data Models. In Bezivin J. & France, R. (Eds).
Proc. of the UML’2002 Workshop in Software Model Engineering
(WiSME 2002), In http://www.metamodel.com/wisme-2002.

JAVA (2004). Java 2 Platform Enterprise Edition . In http://java.sun.com/
j2ee/

McUmber, E. & Cheng, B. (2001) A Generic Framework for Formalizing
UML. Proc. of IEEE International Conference on Software Engi-
neering (ICSE01), Toronto, Canada.

MDA.(2004). The Model Driven Architecture, Object Management
Group. In www.omg.org/mda

Figure 5. A MDA-Based Component Model

Meyer B. (2003). The Grand Challenge of Trusted Components. Proc.
of the 25th International Conference on Software Engineering,
Portland, Oregon , 660-667.

Meyer B. (2001). The .NET Training Course. Prentice-Hall.
OCL (2004). OCL Specification. Versión 2.0. Documento ptc/03-03-14.

In www.omg.org
OMG (2004). Object Management Group Documents. In www.omg.org
Szyperski, C. (1998). Component Software – Beyond Object-Oriented

Programming, Addison-Wesley.
UML Tools (2004). In www.objectsbydesign.com/tools/
Zaremski, M.& Wing, J.(1997). Specification matching of software

components ACM Transactions on Software Engineering and
Methodology (TOSEM), 6(4), 333-369.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/foundations-component-based-

development-mda/32554

Related Content

A Disaster Management Specific Mobility Model for Flying Ad-hoc Network
Amartya Mukherjee, Nilanjan Dey, Noreen Kausar, Amira S. Ashour, Redha Taiarand Aboul Ella Hassanien

(2016). International Journal of Rough Sets and Data Analysis (pp. 72-103).

www.irma-international.org/article/a-disaster-management-specific-mobility-model-for-flying-ad-hoc-network/156480

Parallel and Distributed Pattern Mining
Ishak H.A Meddahand Nour El Houda REMIL (2019). International Journal of Rough Sets and Data

Analysis (pp. 1-17).

www.irma-international.org/article/parallel-and-distributed-pattern-mining/251898

A Machine Translation System from Indian Sign Language to English Text
Kinjal Mistree, Devendra Thakorand Brijesh Bhatt (2022). International Journal of Information Technologies

and Systems Approach (pp. 1-23).

www.irma-international.org/article/a-machine-translation-system-from-indian-sign-language-to-english-text/313419

Knowledge Acquisition on Dante Alighieri's Works
Elvira Immacolata Locuratoloand Valentina Bartalesi Lenzi (2018). Encyclopedia of Information Science

and Technology, Fourth Edition (pp. 5067-5076).

www.irma-international.org/chapter/knowledge-acquisition-on-dante-alighieris-works/184209

The Summers and Winters of Artificial Intelligence
Tad Gonsalves (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 229-238).

www.irma-international.org/chapter/the-summers-and-winters-of-artificial-intelligence/183737

http://www.igi-global.com/proceeding-paper/foundations-component-based-development-mda/32554
http://www.igi-global.com/proceeding-paper/foundations-component-based-development-mda/32554
http://www.irma-international.org/article/a-disaster-management-specific-mobility-model-for-flying-ad-hoc-network/156480
http://www.irma-international.org/article/parallel-and-distributed-pattern-mining/251898
http://www.irma-international.org/article/a-machine-translation-system-from-indian-sign-language-to-english-text/313419
http://www.irma-international.org/chapter/knowledge-acquisition-on-dante-alighieris-works/184209
http://www.irma-international.org/chapter/the-summers-and-winters-of-artificial-intelligence/183737

