Dimensional Modeling: Identifying Patterns and Classifying Patterns

Mary Elizabeth “M.E.” Jones and Il-Yeol Song
College of Info. Science & Technology, Drexel University, Philadelphia, PA 19104, USA, mjones@immaculata.edu, song@drexel.edu

ABSTRACT
Software design is a complex activity. A successful designer requires knowledge and training in specific design techniques combined with practical experience. Designing a dimensional model is not an exception to this challenge. We present Dimensional Design Patterns (DDPs) that can be used for designing dimensional models. We present a metamodel of the DDP and show how to integrate them into Kimball’s dimensional modeling design process.

BACKGROUND
Data Warehousing and the Dimensional Model
Data warehousing databases are usually developed using a dimensional model. A dimensional model is a “specific discipline for modeling data that is an alternative to entity relationship modeling” (Kimball, 1998). Like an entity relationship model, a dimensional model reflects a data structure. However, a dimensional model is specifically designed to model data in a way that 1) emphasizes user understandability, 2) enhances query performance, and 3) accommodates change (Kimball, 1998; Corey, et al, 1998). To achieve these design characteristics, a dimensional model is typically denormalized.

A dimensional model is composed of two types of tables: 1) a fact table and 2) a dimension table. The schema associated with a dimensional model is referred to as a star schema since pictorially its structure resembles a star. The fact table is centrally located with the dimension tables “radiating” outward from the fact table. Fact tables contain foreign keys and measurements. Dimension tables represent and capture business entities used for analyzing the measurements. Dimension tables contain primary keys which associate the dimension attributes to the fact table, and textual descriptions which describe the attributes or characteristics of the business entities.

What is a Pattern?
The literature on patterns provides numerous definitions. As a result of studying those many definitions (Agerbo and Cornils, 1998; Alexander, 1979; Alexander et al., 1997; Buschmann et al., 1996; Coad, et al., 1995; Evits, 2000; Fowler, 1997; Gamma, et al., 1995; Hay, 1996; Muller, 1999; Simon, 1996 and Vlissides, 1998), it becomes clear that the following characteristics are evident in those definitions.

- The problem that the pattern addresses is identified, recognized, and defined from real world situations.
- A pattern provides an approach for formulating a solution to a real world problem.
- The approach must be defined with respect to the real world context from which the problem emanates.
- The approach is reusable because it has been successfully used to solve recurring real world problems.
- A pattern endures over time.

In reviewing dimensional models, similarities in structure and content appear within, and in some cases, across subject areas. Since similarity is a prerequisite for pattern development it appears that pattern development for data warehousing applications is a promising research area.

DIMENSIONAL DESIGN PATTERNS (DDPs)
The purpose of the DDPs is assisting data warehousing practitioners when designing dimensional models by providing an approach for identifying dimensions in a systematic and usable way. When studying existing dimension tables, one begins to observe categories of repeated
requirements that manifest themselves across the design of many dimensional models. Kimball’s examples (Kimball and Ross, 2002) and Adamson and Venerable’s examples (Adamson and Venerable’s, 1998) were the basis for identifying the DDPs.

In order to create useful and usable DDPs the following criteria were adhered to:

- DDPs are explained via a commonly known and recognized mental model with the intent of increasing the practitioner’s ability to understand, remember, and apply the DDPs.
- DDPs facilitate the identification of commonly used dimensions thereby providing a greater potential for improving design correctness with the initial model.
- DDPs are common across many dimensional models, thus reusability is improved and design time may be decreased.

DDP Mental Model

The mental model used for teaching students to write a story is the basis for DDPs. The writer considers the “who, what, when, where, and why” components of the story. Each component integrates various aspects of the tale in a creative yet structured way.

The characters involved in the story are created and developed when considering the “who” component. Stories usually refer to important entities and the ideas for those entities are generated when considering the “what” component. Every story is set within a particular time frame and the “when” component aids the writer in determining the time period. The story location is of particular importance and the “where” component aids the writer in determining the setting. The motivation or the reasons behind the story are determined by considering the “why” aspects of the story.

When studying existing dimensional models, it becomes apparent that each model reflects the past activities of a business. Historical data can be assembled and queried in a way that tells a variety of stories. In some cases, business analysts may know or suspect those stories or they may uncover stories that have surprise endings. Therefore the telling of a story is the common mental model for identifying the potential dimensions for a dimensional model.

Domain Dimensions

In this subsection, we present the backgrounds and usage of each dimension pattern.

The Domain DDPs describes core subject area characteristics against which measurements are taken and questions are posed. DDPs (Figure 1) are classified as the following types: temporal (when), location (where), stakeholder (who), action (what is done or accomplished), object (what), and qualifier (why).

When performing analyses, it is important to know when events occur. Facts are historical and those facts need to be placed in the context of a time period in order for the software engineer to perform meaningful analysis. As observed in the dimensional models studied, a time period is typically described in terms of the traditional calendar year, fiscal calendar, time, and/or a special period. Therefore, the temporal DDP is represented as an aggregate of the traditional calendar year, fiscal calendar, time, and special period classes.

At times it may be necessary to place facts in the context of where they occur. Therefore, the obvious use of the location class is capturing a specific locale (e.g., region, state, city, township, etc.) for a facility (e.g., store, warehouse, etc.). However it may also be helpful to gain knowledge regarding the operational attributes of a facility. The location DDP class relationships are represented as an aggregate relationship which captures the location and operational attributes of a facility. More specifically, it captures the facility’s purpose, individuals associated with managing the facility, locale, contact or communication data, and its physical (or configuration) characteristics.

A stakeholder can be associated with and described by an organization or a role. An organization is considered a group of people bound by common work, goals, or interests while a role describes a specific task and set of responsibilities. The stakeholder DDP describes individual stakeholders in terms of the organization to which they belong or their specific capacity or role they perform. It may be used for measuring aspects of an organization or a specific role. The designer needs to decide whether it is necessary to evaluate the performance of the organization and/or the specific roles within the organization.

An action is defined as accomplishing (or doing) something or exhibiting a behavior. For the action DDP there are two types of actions - work or behavior. Therefore the action DDP is modeled as a generalization-specialization. It is typical to measure characteristics associated with the work of accomplishing a specific task. For example, in a manufacturing scenario the analyst may need to evaluate the efficiency of production runs, a retail store may want to assess the effectiveness of a promotion, or a credit company may want to measure the timeliness of credit payments. In many industries it is important to evaluate the behavior associated with an action. For example, an organization may want to determine customer satisfaction via the number and type of complaints received through the customer service group.

The object DDP has two types of objects; conceptual and physical. A conceptual object is defined as an abstract idea used within the domain; whereas a physical object is defined as a tangible entity that is used within the domain. Conceptual objects may be various types of accounts such as revenue accounts, general ledger accounts, savings accounts, checking accounts and expense accounts. Also in the insurance industry, a policy that documents the insurance coverage is an example of a conceptual object. In education, a course may be thought of as conceptual object. Examples of physical objects are products, items, components (used to assemble products), and ingredients.

There are cases when information is more meaningful if it can be classified by a readily identifiable grouping attribute. The qualifier DDP classifies data by profile, state, or causal indicators. The profile DDP is used to group facts based on an identifying characteristic associated with a particular group. For example, employee skill groups can profile employees by their expertise with specific skills. The state DDP describes the circumstances characterizing a particular condition at a point in time. Associating a customer’s satisfaction with regard to a product or service characterizes the customers’ level of happiness (or state) at a point in time. The cause DDP is used to ascertain a possible reason for the occurrence of an event. A retail store is likely to be interested in the effectiveness of an advertising campaign. Therefore it is important to link the specific advertisement to the customer’s purchases. Gathering and analyzing this data over a period of time may indicate the advertisement’s influence on the customer’s buying behavior.

When applying this model, the practitioner is not limited to using only a single class. A new dimension can be created by combining attributes from multiple classes to create a single combination dimension.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.
Mapping the DDPs to an Existing Model

In this section, we illustrate the usage of DDPs using auto maker sales dimensional model (Adamson and Venerable, 1998). This model (Figure 2) is composed of the sales fact table and the following dimension tables: time, dealers, customer demographics, products, and method of payment.

Applying the Domain DDP model to the Auto Make Sales example illustrates the use of all Domain DDP classes in a single dimensional model (Table 1). The column labeled Dimension: DDP Mapping represents the DDP class and the column labeled Attribute: DDP Mapping applies to the dimension table attributes. Multiple mappings in the Attribute: DDP Mapping column represent the application of combined dimension concept while a single mapping illustrates the use of one DDP class.

The following explains the Auto Sales DDP Mapping:

- The time dimension stores attributes that represent the traditional calendar structure.
- The dealers dimension represents the organization who sells the automobiles. The organization is described in terms of its city and state. The dealers can be profiled by using the single brand flag which indicates which dealers sell a single brand of automobile. The date of first operation indicates when the dealer first opened for business.
- All of the attributes in the customer demographics dimension provide the analyst with the ability to profile the dealers’ customers.
- The products dimension represents the automobile. Its attributes describe ways to classify (styling package, line, category, exterior color, interior color) each automobile. The model year and first model year represent the temporal dimension.
- The method of payment dimension is the method in which the customer purchases the automobile. The term in months and rate attributes are profiling attributes while the finance lease agent is the individual who completed the lease.

CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the dimensional design patterns (DDPs) abstracted from case studies and examples presented in literature. Our DDPs cover temporal, action, location, object, stakeholder, qualifier, and combination. As an example of using the DDPs, we illustrated the mapping between our DDPs and a case study.

Our future work includes experiments and evaluation. A traditional pre-test post-test experiment will be conducted to determine the efficiency and effectiveness of the DDPs. The experiment will be conducted in an academic setting with graduate students studying information science. The experiment measures the time and correctness of design problems between the control group (no exposure to DDPs) and the experimental group (exposure to DDPs). In addition a post study evaluation will be used to compare and contrast the subjects’ personal experiences with using the current method for creating dimensional models and the use of DDPs.

REFERENCES

Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad, Peter; and Stal, Michael. Pattern – Oriented Software Architecture: A System of Patterns. Chichester: John Wiley & Sons, 1996.

Gamma, Erich; Helm, Richard; Johnson, Ralph; and Vlissides, John. Design Patterns: Elements of Reusable Object-Oriented Software. Reading: Addison Wesley Longman, Inc., 1995.

Table 1. Auto Sales Domain DDP Mapping

<table>
<thead>
<tr>
<th>Auto Maker Sales Dimensions</th>
<th>Dimension: DDP Mapping</th>
<th>Attribute: DDP Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Temporal</td>
<td>Temporal – Calendar</td>
</tr>
<tr>
<td>Dealers</td>
<td>Stakeholder</td>
<td>Stakeholder – Organization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location – Locale</td>
</tr>
<tr>
<td>Customer Demographics</td>
<td>Qualifier</td>
<td>Qualifier – Profile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qualifier – Profile</td>
</tr>
<tr>
<td>Products</td>
<td>Object</td>
<td>Object – Physical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qualifier – Profile</td>
</tr>
<tr>
<td>Method of Payment</td>
<td>Action</td>
<td>Action – Work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qualifier – Profile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qualifier – Profile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temporal Calendar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stakeholder – Role</td>
</tr>
</tbody>
</table>

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.
Kimball, Ralph; Reeves, Laura; Ross, Margy; and Thornthwaite, Warren. The Data Warehouse Lifecycle Toolkit. New York: John Wiley & Sons, Inc., 1998.

Related Content

Fault Tolerant Data Management for Cloud Services
www.irma-international.org/chapter/fault-tolerant-data-management-for-cloud-services/183822

Lean Logistics of the Transportation of Fresh Fruit Bunches (FFB) in the Palm Oil Industry
www.irma-international.org/chapter/lean-logistics-of-the-transportation-of-fresh-fruit-bunches-ffb-in-the-palm-oil-industry/184245

Artificial Intelligence Review
www.irma-international.org/chapter/artificial-intelligence-review/183726

An Efficient Random Valued Impulse Noise Suppression Technique Using Artificial Neural Network and Non-Local Mean Filter

Strategic Knowledge Management, Innovation, and Performance
www.irma-international.org/chapter/strategic-knowledge-management-innovation-and-performance/112913