
892 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Modelling Spaces and the UML
B. Unhelkar

Ph.D., FACS, University of Western Sydney, Locked Bag 1797, Penrith South DC, 1719, NSW, Australia, , Tel: +61-2-9685-9232,
Mo:+61-413-821-454; Fax: +61-2-9685-9245, bhuvan@cit.uws.edu.au

B. Henderson-Sellers

Ph.D., D.Sc., FACS, FIMA, FIEAust, Faculty of IT, University of Technology, Sydney, brian@it.uts.edu.au

ABSTRACT
As the industrial adoption of the UML grows, so also do the issues faced
by practitioners of the art of modelling. While the UML does provide a
standard mechanism for modelling, it spans a wide gamut of work
products produced by means of varied activities within the entire
Software Development Life Cycle. However, not all features of the UML
apply to all lifecycle “phases”. This paper considers in detail the
importance and relevance of various UML-diagrams in corresponding
modelling spaces relevant to these different phases. By considering these
differences in applicability of the UML diagrams, we propose that these
diagrams and the UML overall will become even more relevant in
practice.

INTRODUCTION
The Unified Modeling Language or UML (OMG, 2001) has been

advocated as an object-oriented software development modelling lan-
guage with wide applicability, although the standard contains no direc-
tives as to which part of the UML should be applied at what stage in the
software development process.

As the UML becomes adopted increasingly in industry, its applica-
bility to particular “phases” os the lifecycle is brought into question. As
the UML evolves, it also grows in size, complexity and difficulty of
understanding. Consequently, its validity and usefulness as a standard
could be challenged. How the UML should be used, not discussed in the
standard but only in derivative texts (e.g. Booch et al.¸1999, Stevens,
2000), becomes a key question to industry adopters. While processes
play their role in making modelling relevant (see Henderson-Sellers and
Unhelkar, 2000), it is still important to clearly delineate the relevance
of the modelling constructs provided by the UML to the corresponding
modelling roles and, therefore, modelling spaces in practice. It is only
with such categorisation and provision of domain of applicability to the
modelling constructs that practitioners can made practical use of the
wide range of UML offerings at the correct stage within the software
development lifecycle (SDLC).

This paper starts with a brief discussion of the UML from a
practitioner’s viewpoint. The practical issues are then considered,
together with a range of UML diagrams. This is followed by a discussion
on the understanding of three relevant modelling spaces: Problem,
Solution and Background modelling spaces; together with the corre-
sponding roles played by project team members in these spaces. The
importance of the UML diagrams in each of these three modelling spaces
is then considered in detail. Finally, we conclude with the relevance of
such an approach in making good use of UML in practice.

THE UNIFIED MODELING LANGUAGE
About the UML

The Unified Modeling Language (UML) of the Object Management
Group (OMG, 2001) is the current de facto modeling language for
(primarily) object-oriented software applications development. The
UML consists, as do all other modelling languages, of (i) a metamodel
and (ii) a notation. There is also a language to add constraints - the OCL
or Object Constraint Language (Warmer and Kleppe, 1998). Formally,
it aims to provide one or more of the following in software development:

Visualizing – UML notations and diagrams provide an excellent
industry standard mechanism to represent pictorially the requirements,
solution and architecture

Specifying – together with visual representations, UML also
facilitates the specification of some of the artefacts. This includes
specifications for actors, use cases, classes, attributes, operations and so
on .

Constructing – UML can also be used for software construction as
it is possible to generate code from UML visual representations depend-
ing on the CASE tool being used. Furthermore, the use of OCL provides
the ability to write software specifications with pseudo-code.

Documenting – With the help of the UML, additional and detailed
documentation can be provided to enhance specifications and visual
representations.

Unhelkar (2003) has argued that the UML can be effectively used
in the following six different types of project categories:

a. New Development projects, wherein systems are designed from
scratch; new business applications can be modelled using, for
example, the UML’s use cases and activity diagrams.

b. Integration projects, wherein newer systems are integrated with
existing (typically legacy) systems

c. Package implementation; for example, implementation of CRMS
or ERP systems

d. Outsourcing projects, wherein UML provides the basis for scoping,
delivery and testing

e. Data Warehousing and Conversion projects, wherein not only are
the data and related information modelled using the UML, but also
the conversion and testing processes use UML to document the
flow

f. Educational projects, wherein UML can be used for testing out
concepts, e.g. for teaching-learning object orientation

Despite the possibility of its application in various types and sizes
of projects, it provides a challenge, more often than not, in practice.
This is because the UML is made up of a suite of diagrams that need to
be understood before being applied in practice.

List of UML Diagrams
The source document by which a practitioner (or student) can learn

about the UML is the OMG standards document (OMG, 2001) or from
one of the many (derivative) texts on the subject. From these docu-
ments, a number of UML diagram types can be identified.(Table 1.1).
There are basically eight diagram types although some texts introduce
a further three. Also, sometimes, sequence and collaboration diagrams
are counted as a single Interaction Diagram type. Robustness diagrams
are rarely discussed. Rosenberg and Scott (1999) reintroduce them, based
on original work by Jacobson et al. (1992). Although not official UML,
Package diagram are often listed as separate from Class diagrams,
because of their increasing importance in organizational and architec-
tural areas of the system. They are also listed separately by at least one

 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour. Copyright © 2004,

Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Innovations Through Information Technology 893

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

UML CASE tool. The component and deployment diagrams are also
referred to as implementation diagrams in UML literature. Object
diagrams are sometimes treated as independent diagrams in their own
right, but are generally not supported by CASE tools as independent
diagrams. At other times, object diagrams get treated as collaboration
diagrams. This discussion indicates the astute reader that the list of the
diagrams itself is not as important as knowing their precise strengths and
the purpose for which the diagrams can be used.

Furthermore, note that these UML diagrams are not orthogonal.
They give different viewpoints on the one system (or rather system
model). Many of these diagrams are interconnected, having dependen-
cies on each other that are important from both syntactic and semantic
angles (Henderson-Sellers, 1998). These diagrams, and the artefacts
within the diagrams, are also augmented by their corresponding speci-
fications and documentation resulting in greater information than just
the visual means would provide.

MODELLING SPACES
Understanding Modeling Spaces in Practice

The model of the system should be unique: for a single system there
is, at least cognitively, a single model. However, models reside in the
modeller’s brain. To communicate that model some diagrammatic and/
or textual notation is used to create modelling work products. Typically
the model itself is too large to fit into a single diagram so that several
diagrams are necessary. Each of these highlights a different aspect of the
system (e.g. static architecture, behaviour, functionality) and at a
different granularity (Unhelkar and Henderson-Sellers, 1995). Further-
more, the suite of diagrams necessary depends upon the stage in the
SDLC. Thus, understanding and appreciation of the value and the
limitations of the UML diagrams and their congruent modelling spaces
is important to provide us with the necessary background to start
applying the modelling approach to practical software development.

Practical difficulties in application of the UML arises because,
although it is common to find a focus on creating various views of the
same model, it is all too easy, in applying the UML, to ignore the fact
that there are different roles within the software modelling exercise that
requires different expertise. For example, the business analysts play a
significant role in understanding, documenting and modelling the busi-
ness issues or problems that the software is trying to solve. This requires
significant understanding of the business but far less understanding of the
technologies of implementation. The system designers, however, need
significant understanding of the languages and databases of implemen-
tation, and therefore need solid technical knowledge. They need mod-
elling constructs that will help them understand the implementation
issues, and also explain their designs to the programmers to help them
undertake the coding. Finally, in most software applications, the
project, organizational and even industrial infrastructure provides
numerous constraints. These constraints, and the operational require-
ments, also need to be expressed in a model, although staying in the
background. This leads to an understanding that there are three major
areas or spaces in which modelling work happens: understanding the
problem, creating a solution, and doing both of these within the
constraints of the architecture, in the background. These three model-
ling spaces are shown in Figure 1. These three distinct, yet related, spaces
of modeling (Unhelkar, 2003) are:

Model Of Problem Space (MOPS)
Model Of Problem Space (MOPS) results from work in the Problem

space that primarily deals with understanding and documenting the
business problem for which the software is being created. This is the work
of Business Analyst using the techniques of Object-oriented Analysis.
Less often, it can also be a technical problem. In any case the problem
space deals with all the work that goes on in understanding the software
or system problem that is yet to be developed. In the case of projects
dealing with existing legacy applications, this problem space handles the
creation of a formal model of what exists, followed by a model of what
is needed.

As the problem space focuses on what is happening with the
business, the major activities that take place in the problem space are
documenting and understanding the requirements, analyzing the require-
ments, investigating the problem in detail, optionally creating a con-
ceptual prototype, and understanding the flow of the process within the
business. Since it is a non-technical description of what is happening with
the user or the business, the problem space needs those UML diagrams
that explain the problem without going into the specifics of the
technology used to provide the solution. These UML diagrams are the
Use Case diagram and the Activity diagrams, followed by high-level use
of Class and Sequence diagrams, and optionally State Chart diagrams.

Model Of Solution Space (MOSS)
Model Of Solution Space (MOSS) results from the design for the

system that will enable handling of the problem described in the problem
space. This is the technical work and the role that creates this model in

Table 1.1: Table of UML diagrams in Practice (* indicates additional
diagrams to the original OMG list)

UML
diagrams

Model Representing
the …

1. Use case
diagrams

functionality from a
user’s viewpoint

2. Activity
diagrams

the flow - within a
method or the system

3. Class
diagrams

Classes, entities,
business domain,
database

4. Sequence
diagrams

the interactions
between objects

5. Collabora
tion
diagrams

the interactions
between objects

6. Object
diagrams
*

objects and their
links

7. State
chart
diagrams

the run-time
lifecycle of an object

8. Compone
nt
diagrams

the executables,
linkable libraries etc.

9. Deploym
ent
diagrams

the hardware nodes,
processors and,
optionally,
corresponding
components

10. Package
diagrams
*

Subsystems,
organizational units

11. Robustne
ss
diagrams
*

architecture by
ensuring separation
of interface from
business models

Figure 1: The three modeling spaces (based on Unhelkar, 2003)

ANALYSIS

DESIGN + CODE

SOLUTION TOSOLUTION TO
REALREAL--WORLDWORLD

PROBLEMSPROBLEMS

A
R

C
H

IT
E

C
TU

R
E

894 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

the solution space is that of a System Designer. The designer takes the
information made available in the problem space in order to create and
provide a solution that satisfies the needs of the user understood in the
problem space. Since this is a technical modeling space, it needs detailed
understanding of the programming languages, development of program-
ming environments, understanding of databases, middleware, web appli-
cation solutions, and a number of other related technical details. As a
result, the primary diagram used in the solution space is the class diagram
including the lower-most details of a class such as attributes, types of
attributes, their initial values, operations and their signatures. The class
diagrams are followed by sequence diagrams, together with their mes-
sages and protocols, in the solution space. Furthermore, State chart
diagrams and object diagrams may also be used sparingly here. Finally,
in order to complete the solution we will also need component diagrams,
which may be initiated in the background space discussed next. The
component diagrams represent the executable chunks of code or libraries
(in a Windows environment these will be the .exe and the .dll), which
are finally incorporated in the software solution.

Model Of Background Space (MOBS)
Model Of Background Space (MOBS) – deals with the background

architecture of the system. The role is played by an Architect, and is
supported by the Manager. This modelling space deals with two major
aspects of software development that are not covered by either the
problem space or solution space: architecture and management.

Management deals primarily with the planning of the entire project
and does not necessarily form part of the problem or the solution space.
To rephrase, management includes both problem and solution space.
There are a number of activities within management that are handled
in the background by the person playing the role of the project manager.
They include planning the project, resourcing the project hardware,
software, and people, budgeting and performing cost benefit analysis,
tracking the project as it progresses so that the various iterations are
performed per the requirements of the process, and providing the
checkpoints that yield quality results for the roles in the problem and
solution space. Planning activities fall under the general category of
management, or to be precise, project management. It is worth mention-
ing here that while we have the job of managing such projects, the UML
itself does not provide any direct help in project management as such.
For example, there are no diagrams of the UML that can be used in
managing projects.

Architectural work, on the other hand, deals with a large amount
of technical background work that must consider major issues of
architecture of the solution, existing architecture of the environment
in the organization, and the operational requirements of the system
(requirements of the system in operation—for example the stress and
the volume and the bandwidth that the system needs). Further back-
ground issues include the important strategic aspects of reusability of
programs, designs, and even architecture. These activities will most
certainly require the local knowledge of the way in which the environ-
ment works, and the industrial knowledge of the availability of reusable
architectures and designs. In all modern day software systems, making
software in-house is almost sacrilegious, unless the avenues of buying it,
or at least some sizeable component of it, haven’t been exhausted. This
all-important “make versus buy” decision is heavily influenced by the
fact that work in this space is abstract yet precise. Explicit models of
software or components greatly influence the decision to buy (or not to
buy) them. The background space will need help and support from UML
in modelling the deployment environment as well as in reusing both
architecture and design. The UML diagrams that the background space
uses as provided by the UML are primarily the deployment diagrams and
component diagrams. More importantly though, the background space
will end up using large material in the UML domain that deals with
analysis patterns such as the work by Martin Fowler [1997, Design
Patterns by the Gang of Four [Gamma et al. 1995], Cognitive patterns
[Gardner et al. 1998], Anti patterns [Brown et al. 1998], and so on.

SUMMARY OF THE MAPPING THE UML TO THE
MODELLING SPACES

Further to the above description of the work that happens in the
modelling spaces, Table 2 summarizes the relative importance of each
of the UML diagrams in each of the modelling spaces and to each of the
major modelling roles within the project. While project team members
can work in any of these modelling spaces using any of the UML
diagrams, good quality models will result by understanding the impor-
tance of the diagrams with respect to each of the modelling spaces.

CONCLUSIONS
In this paper we have presented a practical approach to using the

UML. This is achieved by understanding the various modelling spaces,
namely Problem, Solution and Background modelling space. We then
created a simple star rating (1 to 5) of the various UML diagrams and
corresponding modelling spaces. By creating such an understanding we
anticipate that the UML will become more relevant in practice and, even
more importantly, will constrain the modeller’s choice of diagram and
notation influence strongly by the modelling space in which they are
working. They only need to address the appropriate subset of the UML
before making their choice. Division of the work in the three modelling
spaces in shown in Figure 1, and summarised in the table. It should be
noted that there is no attempt made to create three watertight compart-
ments but, instead, understanding and giving weighting to the roles
working in corresponding modelling space. Thus the oft-heard claim
that the UML is all things to all people, it is “too large” for practical
usage can be obviated. However, the best way to use the UML still
requires process knowledge. In this paper, we have purposefully not
addressed this important issue but, instead, focussed on the modelling
issues in order to clarify the realm of applicability of the various types
of UML diagram.

Table 2: Importance of UML diagrams to respective models (a maximum
of 5 * for maximal importance to that particular space)

UML
diagrams

MOPS
(Busine
ss
Analys
t)

MOSS
(Designe
r)

MOBS
(Archit
ect)

Use case
diagrams

***** ** *

Activity
diagrams

***** ** *

Class
diagrams

*** ***** **

Sequence
diagrams

*** ***** *

Collaboration
diagrams

 ** *

Object
diagrams

* ***** ***

State chart
diagrams

*** **** **

Component
diagrams

* *** *****

Deployment
diagrams

** ** *****

Package
diagrams

*** ** ****

Robustness
diagrams

* *** *****

Innovations Through Information Technology 895

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ACKNOWLEDGEMENTS
The primary author wishes to acknowledge the support of the

University of Western Sydney, School of Computing and IT, notably
MIRAG: Mobile Internet Research and Applications Group.

REFERENCES
Booch, G., Rumbaugh, J. and Jacobson, I., 1999, The Unified

Modeling Language User Guide, Addison-Wesley, Reading, MA, USA,
482pp

Brown, W, Malveau, R. “Skip,” McCormick III, H., and Mowbray,
T., Anti Patterns: Refactoring Software, Architectures, and Projects in
Crisis, John Wiley & Sons, Inc., 1998.

Fowler, M., et al., Refactoring: Improving the Design of Existing
Code, Reading, Mass.: Addison-Wesley, 1999.

Gang of Four (GOF)—Gamma, Erich, et al., Design Patterns:
Elements of Reusable Object-Oriented Software, Reading, Mass.: Addison-
Wesley, 1995.

Gardner, K., Rush A., Crist, M., Konitzer, R., and Teegarden, B.,
Cognitive Patterns: Problem-solving Frameworks for Object Technol-
ogy, Cambridge University Press: 1998.

Henderson-Sellers, B., 1998, OO diagram connectivity, JOOP/
ROAD, 11(7), 60-68

Henderson-Sellers, B., and Unhelkar, B., 2000, OPEN Modeling
with UML, Addison-Wesley, UK

Jacobson, I., Christerson, M., Jonsson, P. and Övergaard, G., 1992,
Object-Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, Reading, MA, USA 524pp,

OMG, 2001, OMG: OMG Unified Modeling Language Specifica-
tion, Version 1.4, September 2001, OMG document formal/01-09-68
through 80 (13 documents) [Online]. Available http://www.omg.org
(2001)

Rosenberg, D. and Scott, K., 1999, Use Case Driven Object
Modeling with UML. A Practical Approach, Addison-Wesley, Reading,
MA, USA, 165pp

Stevens, P. with Pooley, R., 2000, Using UML Software Engineer-
ing with Objects and Components, updated edition, Addison-Wesley,
Harlow, England, 256pp

Unhelkar, B., Process QA for UML-based Projects, Addison-
Wesley, Boston, 2003

Unhelkar, B. and Henderson-Sellers, B., 1995, ODBMS consider-
ations in the granularity of a reusable OO design, In TOOLS15, (ed. C.
Mingins and B. Meyer), Prentice Hall, 229-234

Warmer, J. and Kleppe, A., 1998, The Object Constraint Language.
Precise Modeling with UML, Addison-Wesley, Reading, MA, USA,
144pp

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/modelling-spaces-uml/32508

Related Content

Fault-Recovery and Coherence in Internet of Things Choreographies
Sylvain Cherrierand Yacine M. Ghamri-Doudane (2017). International Journal of Information Technologies

and Systems Approach (pp. 31-49).

www.irma-international.org/article/fault-recovery-and-coherence-in-internet-of-things-choreographies/178222

Integrated Design of Building Environment Based on Image Segmentation and Retrieval

Technology
Zhou Liand Hanan Aljuaid (2024). International Journal of Information Technologies and Systems Approach

(pp. 1-14).

www.irma-international.org/article/integrated-design-of-building-environment-based-on-image-segmentation-and-

retrieval-technology/340774

The Rise of the Tablet
Paul O'Donnell, Nigel McKelvey, Kevin Curranand Nadarajah Subaginy (2015). Encyclopedia of Information

Science and Technology, Third Edition (pp. 5784-5789).

www.irma-international.org/chapter/rise-tablet/113033

On Inter-Method and Intra-Method Object-Oriented Class Cohesion
Frank Tsui, Orlando Karam, Sheryl Dugginsand Challa Bonja (2009). International Journal of Information

Technologies and Systems Approach (pp. 15-32).

www.irma-international.org/article/inter-method-intra-method-object/2544

Big Data Analysis and Mining
Carson K.-S. Leung (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 338-

348).

www.irma-international.org/chapter/big-data-analysis-and-mining/183748

http://www.igi-global.com/proceeding-paper/modelling-spaces-uml/32508
http://www.irma-international.org/article/fault-recovery-and-coherence-in-internet-of-things-choreographies/178222
http://www.irma-international.org/article/integrated-design-of-building-environment-based-on-image-segmentation-and-retrieval-technology/340774
http://www.irma-international.org/article/integrated-design-of-building-environment-based-on-image-segmentation-and-retrieval-technology/340774
http://www.irma-international.org/chapter/rise-tablet/113033
http://www.irma-international.org/article/inter-method-intra-method-object/2544
http://www.irma-international.org/chapter/big-data-analysis-and-mining/183748

