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ABSTRACT
Design patterns are reusable solutions to recurring problems that occur
during software development. Most UML CASE tools do not assist in the
integration and code generation of design patterns, this task is still left
to the programmer. This paper describes a forward engineering process
of UML static models which supports working with design patterns. This
approach is based on the integration of semi-formal notations in UML
with algebraic specifications. Transformations are supported by a
library of reusable schemes and by a system of transformation rules
which allow translating UML  to algebraic specifications and object
oriented code step by step. All the proposed transformations could be
automated; they allow traceability and could be integrated into iterative
and incremental software development process. Eiffel was chosen to
show the feasibility of our approach.

1. INTRODUCTION
Design patterns are a useful concept to guide and to document the

object-oriented software system design. Their contribution covers
definition, design and documentation of class libraries and frameworks.
Even if there is no consensus about the way to support the application
of design patterns (using tools, languages, etc) in the software develop-
ment, this task should be automated or at least assisted. The industrial
experience (Beck et al., 1996) indicates that design patterns increase the
speed of the development of systems and facilitate the communication,
although they are hard to write. Manual application is tedious and  error
prone. The loss of traceability is a drawback of the by-hand-coding task
(Albin-Amiot & Guéhéneuc, 2001a). When a pattern is applied, the
resulting implementation does not provide a means to go back to the
pattern from which it was derived, the pattern code being mixed within
the user application code.

Design patterns have been widely accepted by software practitio-
ners. Several IDE (Integrated Development Environments) and UML
modeling software environments have begun to introduce support for
the design patterns (OMG, 2003). Most CASE tools generate code from
UML design. Few UML CASE tools provide assistance to the program-
mer in the integration of code automatically generated for the patterns
in their applications.

On the other hand, most existing pattern tools simply assist in “cut
and paste” processes, whereby the designer selects a pattern and obtains
a code piece in the appropriate language to incorporate it into the
implementation. The techniques are not, in general, independent of the
language and they are unable to generate code in more than one language.
The programmer needs then to adjust the code to the implementation
(Peckman & Lloyd, 2003).

These approaches assume that the patterns involve classes dedi-
cated to their role as collaborator within a particular design pattern. This

is not true in general: the patterns rarely exist in isolation. It frequently
happens that a collaborator in one pattern plays a role in another. The
pattern definition emphasizes this fact: a pattern is a solution to a
problem in a particular context. Also, a pattern is implemented produc-
ing not only new classes and routines, but more often adapting the
existent context, i.e., preexistent program constructions, to the roles
they assume in the newly applied pattern. A more beneficial application
of a design pattern should adapt the existent construct in a program, a
task more complex and context-dependent than the code generation by
hand (Eden et al., 1997).

Bulka (2002) analyzes state of the pattern automation tools and
discusses the pros and cons of several approaches. It establishes that
there are several degrees of pattern automation offered by the UML
modeling tools. They go from simple template  to intelligent patterns.
The simple template approach simply inserts a group of related classes
in a workspace (e.g. UMLStudio) The intelligent pattern approach
attempts to integrate classes from the newly inserted pattern with the
existing classes, renaming classes and methods as required and respond-
ing to changes in other parts of the UML model (e.g. ModelMaker).

Favre et al. (2003) describe a rigorous process to transform UML
static models into object oriented code. A transformational approach
is introduced for the integration of the UML static diagrams with
algebraic languages and object oriented code. Our current contribution
is towards an embedding of the detection and code generation of design
patterns in a rigorous process which facilitates reuse and evolution. This
process is based on the combination of UML semiformal notations and
algebraic specifications and it is guided by rules to translate step-by-step
UML constructions allowing traceability. The NEREUS language is used
to describe the static structure  of a design pattern (Favre, 2003) Eiffel
was the language of choice to show the feasibility of our approach.

 This paper is organized as follows. Section 2, deals with the related
work. Section 3 outlines the NEREUS language. Section 4 describes the
basis of a forward engineering method. Finally, Section 5 considers
conclusions and future work.

2. RELATED WORK
In Budinsky et al. (1996) a tool to automatically generate code of

design patterns from a small amount of information given by the user
is described. This approach has two widespread problems. Invasion, the
user should understand “what to cut” and “where to paste” and both
cannot be obvious. It is not reversible, once the user has incorporated
pattern code in his application, any change that implies to generate the
code again will force it to reinstate the pattern code in the application.
The user cannot see changes in the generated code through the tool.
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Florijn et al. (1997) describe a tool prototype that supports design
pattern during the development or maintenance of object-oriented
programs.

Albin-Amiot & Guéhéneuc (2001a) describe how a metamodel can
be used to obtain a representation of design patterns and how this
representation allows both automatic generation and detection of design
patterns. The wanted contribution of this proposal is the definition of
design patterns as entities of modeling of first class. The main limitation
of this approach concerns the integration of the generated code with the
user code.

Albin-Amiot & Guéhéneuc (2001 a) present two tools (Scriptor and
PatternsBox ) that help the developers to implement large applications
and large frameworks using design patterns. In Scriptor  the developers
have little or no control on the generated code, once the code is
generated, there is no form of locating what design pattern has been
applied and where it has been applied. PatternsBox (preservative
Generation) tool allows us to instance design patterns. The developers
need to write most or great part of the code by hand.

3.    THE NEREUS LANGUAGE
NEREUS  (Favre, 2003) is a notation to formally specify UML

static diagrams. NEREUS is based on GSBLoo (Favre, 2001). As GSBLoo

is relation centric: it expresses different kinds of relations as primitives
to develop specifications. The characteristic that distinguishes NEREUS
from GSBLoo is its language neutrality. NEREUS is open to many
algebraic languages including CASL and Larch.

The syntax of a basic specification is presented below:

CLASS className [<parameterList>]
IMPORTS <importList>
INHERITS <inheritsList>
DEFERRED
TYPE <sortList>
FUNCTIONS <functionList>
EFFECTIVE
TYPE <sortList>
FUNCTIONS <functionList>
AXIOMS
     <varList>
    <axiomList>
END-CLASS

In NEREUS generic classes can be distinguished by means of explicit
parameterization. The IMPORTS clause expresses dependency rela-
tions. Subclassing is expressed in the  INHERITS clause, the specification
of the class is built from the union of the specifications of the classes
appearing in the <inheritsList>.

NEREUS allows us to define local instances of a class in the
IMPORTS and INHERITS clauses by the syntax  className
[<bindingList>] where the elements of <bindingList> can be pairs of
sorts s1: s2, and/or pairs of operations o1:o2 with o2 and s2 belonging
to the own part of ClassName.

Sorts and operations are declared in the TYPE and FUNCTIONS
clauses. In NEREUS it is possible to specify any of the three levels of
visibility for operations: public, protected and private. These are
expressed by prefixing the symbols: +, #, and - respectively. If the
operation is not decorated with a symbol of visibility, it can be assumed
it is public.

NEREUS distinguishes deferred and effective parts. The DE-
FERRED clause declares new sorts or  operations which are incompletely
defined. The EFFECTIVE clause either declares new sorts or  operations
which are completely defined, or completes the definition of some
inherited sort or operation.

NEREUS supports higher-order operations (a function f is higher-
order if functional sorts appear in a parameter sort or the result sort of
f). In the context of OCL Collection formalization,  second-order
operations are required. It is possible to limit the scope of the declara-
tions of auxiliary symbols by using  local definitions. Also, NEREUS

allows us to specify incomplete signatures by using the underscore
notat ion:

f : d
1
  x  d

2
  x _   ->  r

NEREUS provides a taxonomy of constructor types which classi-
fies binary associations according to: its kind (aggregation, composi-
tion, association, association class, qualified association), its degree
(unary, binary), its navigability (unidirectional, bi-directional) and its
connectivity (one-to-one, one-to-many, many-to-many).

Generic relations can be used in the definition of concrete relations
by instantiation. New associations can be defined by the following
syntax:

ASSOCIATION <relationName>
IS <constructorTypeName> [ ...: Class1; ...:Class2; ...:Role1; ...:Role2;

 ...:mult1; ...:mult2; ...:visibility1; ...: visibility2]
CONSTRAINED-BY <constraintList>
END

The IS  clause expresses the instantiat ion of
<constructorTypeName> with classes, roles, visibility and multiplicity.
The CONSTRAINED-BY clause allows the specification of static
constraints in first order logic.

CLASS C
ASSOCIATES
<<relationName>>
.. .
END-CLASS

The keyword ASSOCIATES identifies ordinary associations. An
association may be extended to have its own set of operations and
properties. Such an association is called an association class.

The package is the mechanism provided by NEREUS to group
classes. It matches the UML semantics. Classes and their relations from
the system design might be separated into a series of packages, using the
NEREUS import dependencies to control access among these packages.

Several useful predefined types are offered in NEREUS, for example
Collection, Set, Sequence, Bag, Boolean, String, Nat and enumerated
types.

NEREUS is an intermediate notation open to many other formal
languages. In particular, we define its semantics  by giving a precise
formal meaning to each of the construction of the NEREUS in terms of
the CASL language, due to it is a unifier of proven algebraic languages
(Astesiano et al., 2002).

4. FORWARD ENGINEERING THROUGH DESIGN
PATTERNS

At design level, the patterns are represented through constructions
of high level (such as classes, methods and relationships) in an imple-
mentation independent way. In the existing design pattern catalogs
(Gamma et al, 1995; Sherman et al, 1998), the pattern description is
made through text, UML diagrams and code examples of alternative
implementations of the same ones.

As a rule, a pattern is expressed in a design vocabulary richer than
one offered by the programming languages or design notations. A design
pattern is not just a solution structure consisting of a UML diagram, it
is more than classes and relationships.

We propose a forward engineering process of UML static diagrams
which support working with design patterns. The UML/OCL is used to
generate high level specifications in NEREUS. These specifications are
tailored to specify realizations that fit a specific technology, which in
turn are used to generate the code.

There is a need for reusable and adaptable components. We define
specific reusable components for associations, OCL Collections and
design patterns.

A component is defined in three levels of abstraction: specializa-
tion, realization and implementation. The specialization level  describes
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components with a high level of abstraction, which is independent of any
implementation technology. This level defines  a hierarchy of incom-
plete specifications as an acyclic graph.  The specialization  level has
two views. One of them is based on NEREUS and the other in UML/OCL.
OCL helps the user in the component identification  process without
forcing him to change the specification style. Specifications in the
specialization level are linked with subcomponents at the realization
level. The  realization sub-components are trees of algebraic specifica-
tions: the root is the most abstract definition, the internal nodes
correspond to different realizations of the root. The realization speci-
fications  fit a specific  technology. For example, for the Composite
component (Gamma et al., 1995 p. 163) the specialization level
integrates incomplete specifications, some of them  allow us to add the
same element twice. Different realizations through sequences, set or bag
could be associated. The implementation level associates each leaf of the
realization level with different implementations that are object-ori-
ented code pattern.

A specific reusable component is Association. The specialization
level describes a taxonomy of associations classified according to kind,
degree, navigability and multiplicity. Every leaf in this level corresponds
to sub-components at the realization level. For example, for a “binary,
bi-directional and many-to-many” association, different realizations
through hashing, sequences, or trees could be associated. Implementa-
tion sub-components express how to implement associations and
aggregations. For example, a bi-directional binary association with
multiplicity “one-to-one” will be implemented as an attribute in each
associated class containing a reference to the related object. On the
contrary, if the association is “many-to-many”, the best approach is to
implement the association as a different class in which each instance
represents one link and its attributes

The component reuse is based on the application of reuse opera-
tors: Rename, Hide, Extend and Combine. These operators were defined
on the three levels of components (Favre et al, 2003). 4.1. Description
of the steps of the method

Figure1 shows the main steps of the method.
Starting from UML class diagrams, an incomplete algebraic speci-

fication can be built by instantiating reusable schemes and classes which
already exist in the NEREUS predefined library. Analyzing OCL speci-
fications we can derive axioms that will be included in the NEREUS
specifications. Preconditions written in OCL are used to generate
preconditions in NEREUS. Postconditions and invariants allow us to
generate axioms in NEREUS. (Favre et al. 2000, Favre, 2001). Thus, an
incomplete algebraic specification containing the highest information
extracted from UML model can be built semi-automatically. The
refinement of the NEREUS incomplete specification into the complete
algebraic specification and code is based on a library of reusable
components.

The algebraic specification is used to detect patterns into the design
by means of a signature matching (the objects are known through their
interfaces, i.e., through the signatures of their operations). To support
this process, a library of reusable components was built. It contains
schemes of design patterns in NEREUS. Gamma et al. (1995) patterns
were considered.

When a pattern is detected, its specification is integrated to the
specification of the UML diagram. An implementation is selected and
the code is generated and  integrated with the code corresponding to the
rest of the UML diagram.

To carry out this task, a library of schemes of design patterns
written in Eiffel was built (for each of the patterns of the library, the
programmer has different implementations). The relation introduced in
NEREUS using the clause IMPORTS will be translated into a client
relation in Eiffel. The relation expressed through the keyword INHER-
ITS in NEREUS will become an inheritance relation in Eiffel. Associa-
tions are transformed by instantiating schemes that exist in the reusable
component Association. For every ASSOCIATES clause, a scheme in
the implementation level of the association component will be selected
and instantiated.

4.2. Example
Figure 2 shows a hierarchy of classes of a diagram editor presented

in (Mandel & Cengarle, 1999). The editor supports the notion of group
of graphic elements. A document consists of pages and a page consists
of graphic elements. Graphic elements are either geometric figures or
groups of at least two graphic elements; a graphic element can be a
member of a group at most. Graphic elements can be moved, rotated, etc.

The diagram in Figure 2 can be enhanced with OCL constraints that
further restrict the possible system states. For example:

Group
self.elements->size ³ 2

Group::display (x:Real, y:Real)
post: result = self.elements -> iterate(component |component.display)

Figure 3 shows the partial specification in NEREUS of the UML
class diagram shown in Figure 2 which corresponds to the Composite
pattern. Also, it  shows the Composite pattern scheme in NEREUS.

The diagram can be automatically translated into a NEREUS
algebraic specification. Starting from this specification, the presence of
the Composite pattern can be detected by means of signature matching.
The detection process allows generating complete and integrated code.

Figure 1. From UML/OCL to code

Figure 2. A diagram Editor
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For the classes of the Composite pattern it will be generated operation
signature, pre-conditions and post-conditions of operations and class
invariant, but also the code of some operations.

Composite-Component aggregation is transformed by  instantiat-
ing the Aggregation_1to* scheme. This instantiation includes the add,
remove and getChildren operations. The number of components of the
Composite is limitless, the multiplicity indicates 2..*, for this reason
those are stored in a collection, in particular,  a linked list was selected.
On the other hand, the code corresponding to the features can be
generated by reusing the Iterator class of the Eiffel Library (Favre et al.,
2003) .

5. CONCLUSIONS
This work presents a rigorous process to forward engineering UML

static models, which supports working with design patterns. This
approach is based on the integration of semiformal notations with
algebraic techniques and it is guided by rules to translate step by step UML
constructions allowing traceability.

The proposed transformations preserve the integrity between
specifications and code. Most of the transformations can be undone,
which provides great flexibility in code generation process supported by
the existing UML CASE tools. Following this approach we can use the
transformations and apply them backward to reverse engineer code to
a UML diagram.

 Our approach depends on the availability of a large catalog of
patterns which covers different implementations. Currently, a library
of reusable components linked to design patterns is under construction.

A crucial problem is how to detect sub-diagrams which can be
matched with a pattern. To date, the identification of design patterns
by signature matching and semantic matching is being analyzed.

We foresee the integration of our results in the existing UML CASE
tools environments
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