
230 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Extreme Outsourcing
Jakob H. Iversen

College of Business Administration, University of Wisconsin Oshkosh, 800 Algoma Blvd., Oshkosh, WI 54901,
iversen@uwosh.edu

ABSTRACT
As companies are looking at reducing their software development cost,
they are increasingly turning to offshore outsourcing to take advantage
of lower wages overseas. This paper looks at this and another major
trend in software development, agile development methodologies, to
determine whether the practices of the most common agile methodology,
extreme programming, can support offshore outsourcing. The paper
concludes that while some practices are easily implemented, others
require a great deal of consideration and may not be feasibly implemented
at all. Offshore outsourcing can benefit from extreme programming
practices by achieving higher visibility into the development process.

INTRODUCTION
Even as the IT world finds itself in a severe crisis with high

unemployment rates, the second half of this decade may very well hold
just the opposite: a severe lack of qualified software developers, database
administrators, network administrators, and IT support staff. It has been
estimated that by 2010, there will be a gap of 5.1 million skilled workers
(Kaihla, 2003). This demographic trend is likely to hit software
development companies particularly hard, as enrollments in computer
science, engineering, and MIS programs have declined over the past
years at the same time as eight of the ten fastest growing job occupations
in the US are predicted to be information technology occupations, and
three of these are in software development (Table 1).

The last decade has been one of continuous and unrelenting global
competition in the software industry. A growing lower wage and a highly
skilled software engineering labor force in India and other Asian
countries has precipitated shifts in software production from Europe and
North America to Asia. In response to these challenges senior managers
in European and North American software industries are adopting a
variety of strategies to stay competitive. For example, some firms are
outsourcing software development to India, the Philippines, Russia, and
other countries with a skilled work force demanding lower wages (Ebert
& Neve, 2001; Thibodeau, 2003).

Simultaneously, software companies are faced with more rapidly
changing business conditions and requirements to the software they are
developing. To deal with this challenge, many software companies are
investigating several new ways of organizing and conducting software

Table 1: Ten fastest growing job occupations in the US. Employment
numbers are in thousands (BLS, 2001).

Occupation 2000 2010 Absolute
change

Percent
change

1. Computer software engineers,
applications

380 760 380 100

2. Computer support specialists 506 996 490 97
3. Computer software engineers,

systems software
317 601 284 90

4. Network and computer systems
administrators

229 416 187 82

5. Network systems and data
communications analysts

119 211 92 77

6. Desktop publishers 38 63 25 67
7. Database administrators 106 176 70 66
8. Personal and home care aides 414 672 258 62
9. Computer systems analysts 431 689 258 60
10. Medical assistants 329 516 187 57

development, commonly referred to as agile methodologies (Fowler,
2003). One of the most popular of these methods is eXtreme Program-
ming (XP) (Beck, 2000), in which a small team of co-located developers
and customer representatives work intensively on rapidly developing a
solution to a particular situation in the customer organization.

The next section describes the history and reasons for offshore
development, including some of the problems and opportunities com-
panies experience when outsourcing to a foreign entity. Section 3 gives
an overview of extreme programming, and section 4 shows how to
combine the two trends to support agile development between on-shore
and off-shore entities. Finally, section 5 provides a summary and
conclusion as well as avenues for further research.

OFFSHORE DEVELOPMENT
When companies decide to move a portion of their development

activities overseas, there are two main underlying reasons: cost savings
and access to a larger labor pool (Carmel & Agarwal, 2001). In the
current weak economy, the former appears to be the most prevalent
reason for outsourcing work (Perez, 2003). It is estimated that compa-
nies can save between 20 and 70% of the cost of developing software
in the United States by outsourcing to India (Kling, 2003; Vijayan,
2003) .

So far, most outsourced work has gone to companies in India, where
developers have a reputation for high quality work. Indian companies
are increasingly competitive with American and European firms, but
wages are starting to increase too, causing work to be shifted to former
Eastern European countries such as Russia and Romania, as well as less
developed Asian nations such as Philippines and China. A recent survey
of 252 US IT managers showed that 38% are currently outsourcing IT
work to India. The second most popular destination, China, was only
used by 6% of respondents (Vijayan, 2003).

When selecting a region for outsourcing, companies typically
consider the following factors:

• Language. The ability to communicate with workers at the
outsourcing site is greatly increased with a common language. For
US companies, the ability to communicate in English is a great
asset when considering where to place outsourcing. Canada and
Ireland naturally have an advantage on this point, but India has
also gained a reputation for good English language skills among
its developers.

• Distance. The further separated the on-shore and off-shore sites
are, the more difficult it is to visit physically. In some third-world
countries, a poor infrastructure may further add to the travel time
required to reach the site. Electronic communication may to
some extent alleviate these distances, but time zone difference is
also a barrier; when developers in India meet for work, their
American counterparts will just be ready to leave, giving very
little ability to communicate in real time by either phone or video
conference. On the other hand, companies can also use time
differences around the world in a “follow-the-sun” approach,
where teams around the world package their day’s work and pass
it on to the team eight time zones to the west that is just getting
ready to meet for work. Having development centers in the US,
India, and Europe can attain such a scheme (Carmel & Agarwal,
2001) .

 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour. Copyright © 2004,

Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Innovations Through Information Technology 231

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

• Technical quality. One of the main reasons for going overseas is
to have access to a larger pool of qualified labor. However, in order
for development to be successful, it is important that the
technical quality of the developers is sufficient that they be able
to perform the required tasks. In India, Ireland, and Canada this
is generally true whereas in China, Romania, and Russia, it is more
difficult to find the required technical talent.

• Cost. Lower wages is the major reason for sending work off-shore.
But there are also great differences between different regions
around the world. But the wages generally correspond to the
technical quality and language skills of the developers. Whereas
developers in Canada are cheaper than US workers, the difference
is not as great as that of Indian developers and especially Chinese
and Romanian developers. However, the technical quality and
language skills of Canadian developers exceed those of the off-
shore developers, making Canada a good choice for many
outsourcing companies (Horowitz, 2003).

Companies who have outsourced some of their software develop-
ment have encountered a number of problems over the years. One of the
most difficult problems is that the visibility into the off-shore process
is low. This and other problems increase the risk of the software project.
In the past, the solution to this has typically been to develop more
comprehensive documentation and conduct more up-front analysis and
design. However, such approaches also slow down progress on the
project.

AGILE DEVELOPMENT
Agile Development methodologies have been used in software

development since the 1950s under a number of different names, such
as iterative, incremental, and evolutionary development (Larman &
Basili, 2003). Agile development is mostly seen as a contrast to plan-
driven methodologies such as the waterfall model. However, there has
recently been an effort to determine how agile and plan-driven ap-
proaches can inform and benefit from each other (Boehm & Turner,
2003) .

Extreme Programming (XP) is one of the most popular forms of
agile development. Developed in the late 1990’s by Kent Beck and Ward
Cunningham it focuses on empowering small teams to determine the best
process for quickly developing a solution. The process is usually
characterized by the 12 practices described below (Jeffries, 2001):

• Whole Team. The whole team is co-located and has a customer
representative on the team (Baheti et al., 2002).

• Planning game. One of the characteristics of XP is constant
planning of small increments of the system. This involves two
practices: 1. Release planning, which specifies which features will
be included in which releases. The release plan is only accurate for
next release, but is updated regularly. 2. Iteration planning, which
is the plan for a two-week iteration, at the end of which a running
version of the software is available. The customer supplies the
desired functionality for the iteration, but the developers ulti
mately decide which features will be included based on historical
performance data. These two planning steps allow for high
visibility into the process at any given time.

• Customer Tests. Every time a new feature is proposed by the
customer, the customer also specifies what tests will determine if
the feature is implemented correctly. These tests are imple
mented and run as automatic regression tests that the system will
be tested against in any future tests. This type of test-first
development is now supported by many IDEs through unit testing,
examples include Eclipse (www.eclipse.org), BlueJ (www.bluej.org),
and JBuilder (www.borland.com/jbuilder).

• Small Releases. Each iteration results in a running system that
is released to the customer, either to be used for evaluation or for
actual deployment to end users.

• Simple Design. The focus in XP teams is to constantly work on
simplifying the design of the system. The goal is to find the
simplest solution that could possibly work (Beck, 2000).

• Pair Programming. One of the most controversial features of XP
is its reliance on pair programming. In XP, production code is
always developed by two programmers working in concert at a
single computer. This extends the research that has shown that
one of the most effective cost and quality control techniques is
peer review (Fagan, 1986). In pair programming, peer review is
constant, as every line of code is immediately reviewed by a
second programmer (Williams & Kessler, 2000). Pair program
ming in XP is considered one of the primary vehicles for
communication and knowledge exchange among members, and
the pairs are therefore shuffled frequently.

· Test-Driven Development. Developers who use XP, believe that
the best way to ensure continuous quality of the system, is to
create a set of test cases that are run automatically and regularly
to determine any problems in the system. As described under
Customer Tests, the test cases are written before the code that
they will test, and only when the resulting code passes the test,
is a given feature complete. Any time the system fails a test, all
further development stops until the system passes all tests. This
provides immediate and rich feedback to the developers on the
state of the system, and ensures that there is always a running
version of the system.

• Design Improvement / Refactoring. A striking characteristic of
XP, is that developers are constantly seeking ways to remove
duplication, lower coupling, and increase cohesion. The philoso
phy is that time spent on improving the design, will be regained
later as new features need to be added. Developers are expected
to identify and correct any signs of poor design, primarily by
making individual classes well designed, but also by improving
connections between classes.

· Continuous Integration. In the past, many projects have expe
rienced problems when they attempted to integrate many mod
ules written by disparate teams or individuals. Integration was
often one of the last activities to be carried out. In XP, integration
is an ongoing activity that is carried out at least daily. This
practice supports test-driven development in ensuring that the
system is always operational.

• Collective Code Ownership. Traditionally, individual program
mers or teams would be responsible for each their own part of the
code. If a developer needed changes made in someone else’s code,
this may have taken a long time, causing the change to be made
as duplication in the developer’s own code base. In XP, every
developer has access to every part of the system, and can modify
every line of code. To ensure that this does not degenerate the
code base, the test-driven approach ensures that any errors are
caught early, and pair programming can help developers under
stand parts of the code by teaming with someone who is an expert
on that part of the code.

• Coding Standard. Adherence to a strict coding standard also helps
counter the ill effects of unchecked collective ownership as well
as ensure future maintainability.

• Metaphor. To ensure that everyone works in the same direction,
XP teams develop a common vision, or “metaphor” for the
system. The metaphor is “a simple evocative description of how
the program works”.

• Sustainable Pace. The XP methodology realizes that program
mers have lives outside of the workplace, and as such prescribe
that teams recognize the need to work at a pace that doesn’t burn
out the individuals. Overtime may be needed in certain periods,
but it should be the exception, not the norm.

AGILE OFFSHORE DEVELOPMENT
As offshore development becomes increasingly widespread, the

problems that will be tackled by dispersed teams in offshore settings are
likely to become increasingly complex, as the simpler problems have
already been solved (Rothman, 2003).

In addition, it is likely that as the pace of business increases, the
uncertainty of most projects will also increase, making it difficult to
make detailed up-front design that can subsequently be passed on to a

232 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

low-level outsourcer for programming. Instead, projects will increas-
ingly employ developers who are capable of capturing and understanding
changes to user requirements and implement them rapidly.

As companies may be forced to outsource high level work, XP is
one methodology that could help successfully complete highly complex,
uncertain, and geographically dispersed projects. XP was designed to
handle projects executed under uncertain conditions, and there is good
evidence that XP teams are able to successfully complete such projects
(Murru et al., 2003; Rasmusson, 2003; Schuh, 2003).

However, XP was also developed for small colocated teams working
on fairly short term schedules. Williams and Cockburn (2003) observe
that most experts have agreed that agile methods “best suit colocated
teams of about 50 people or fewer who have easy access to user and
business experts and are developing projects that are not life-critical.”
Others have, however, argued that XP may be amended for complex,
long-term projects. Crocker (2001), for instance argues that adding a
team coordination layer will allow XP to be used with loosely coupled
collaborating teams. This coordination layer would replace the meta-
phor with a more structured “Up-front Architecture Light”, add a
Liaison role to each team, and amend the planning game with a team-
version where representatives from each team plan the work for the
overall project. In addition, one team acted as a link between the real
customers and the developers.

In the following, I will examine the XP practices and assess to which
extent they are able to support geographically dispersed teams, and to
which extent they need updating or replacing. The discussion is divided
into three parts according to how easy each practice is to apply in a global
outsourced project.

Practices to Follow on Any Project
Extreme Programming builds on sound software engineering prin-

ciples taken to the extreme. Some of these principles are fairly simple
to apply in any project, outsourced or not and include Design Improve-
ments/Refactoring, Coding Standard, and Sustainable Pace.

Practices to Adopt With Little Effort
Some of the practices require more foresight before applying in an

offshore outsourced setting. These generally require subscription to an
agile development philosophy and can therefore typically not be
adopted without making significant concessions to the agile methodol-
ogy.

Small Releases should work with no problems. Elssamadisy (2001)
recommends staying with two-week iterations on a 50-person colocated
team. Such a short cycle may be more difficult to attain on a dispersed
project, but the releases should be kept small enough that iterations take
no longer than four weeks.

Test-Driven Development could be used without problems, provided
that the development environment supports unit testing, and that the
necessary tool support for Continuous Integration is in place for all
teams. If all teams aren’t able to continuously integrate, the unit tests
may be of little value as the regression tests will not run on the entire
system.

Simple Design should be a goal; although it may become a problem
as the system itself becomes larger in scope. However, simple design may
in itself help the team manage the complexity of the system scope.

Practices Requiring Considerable Consideration
The very different nature of globally distributed projects and

typical XP project requires considerable effort in implementing several
of the XP practices. Since the purpose for global outsourcing is to have
more than one team, the Whole Team cannot stay together. However,
to the extent that teams can work autonomously, each subteam may use
XP and thus use this practice locally. For many projects, the major
problem will be having a customer working on the team. This may be
solved by using proxy customers in the form of analysts that are located
close to the actual customer (Crocker, 2001). This also means that
Customer Tests become more difficult to carry out. In addition to having
proxy customers, tool support may also help to allow the customers to
define test cases.

Crocker (2001) suggests that the Planning Game be adapted to
work across teams, but this requires more formalism than what is
traditionally done in XP. This could be done by letting the release plan
remain global, but the iteration plan local.

As a vehicle for communication throughout the team, Pair Pro-
gramming is not suitable, because the communication links would be
difficult to manage across distances temporal and geographical dis-
tances. However, as a way to exchange technical knowledge and increase
quality, this practice is still valuable (Baheti et al., 2002). In addition,
tool support is becoming more readily available (Mezick, 2003).

Collective Code Ownership might be problematic as the project
scales. There may be a need for quality control to ensure that conflicting
changes aren’t checked in. However, the continuous integration and
test-driven development may be a simpler and cheaper solution on most
projects, as any problems would be detected immediately.

The Metaphor has been rejected as both too weak (Crocker, 2001)
and too complex (Elssamadisy, 2001) for large projects. The metaphor
is likely valuable on any project, but may need to be more formalized
to be communicated effectively and precisely to distributed teams.
However, there is some evidence that the effectiveness of the metaphor,
even in smaller settings, isn’t as good as it should be (Herbsleb et al.,
2003) .

CONCLUSION
So far, only a few projects have attempted using offshore and agile

development (Simons, 2002). The results from those efforts indicate
that some of the key values of agile methods (close customer involve-
ment and communication) are more difficult to attain. On the other
hand, some of the XP practices such as continuous integration and
frequent deliverables solve significant problems in traditional outsourcing
projects by providing a high degree of transparency in the processes, as
well as increasing the project velocity.

This research has pointed to some of the areas where XP can be
adopted easily for outsourced projects, and where there might be
problems. As companies continue to explore offshore outsourcing, they
should find value in carefully employing XP practices and other agile
methodologies to support those efforts.

References
Baheti, P., Williams, L., Gehringer, E., Stotts, D., and Smith, J. M.,

2002. Distributed Pair Programming: Empirical Studies and Supporting
Environments (Technical Report TR02-010), Chapel Hill, NC: Depart-
ment of Computer Science, University of North Carolina.

Beck, K., 2000. Extreme Programming Explained, Addison-Wesley
BLS, 2001. BLS RELEASES 2000-2010 EMPLOYMENT PRO-

JECTIONS (USDL 01-443), Washington, D.C.: United States Depart-
ment of Labor, Bureau of Labor Statistics.

Boehm, B., and Turner, R., 2003. Using Risk to Balance Agile and
Plan-Driven Methods, Computer. 36, 6, 57-66.

Carmel, E., and Agarwal, R., 2001. Tactical Approaches for
Alleviating Distance in Global Software Development, IEEE Software.
18, 2, 22-29.

Crocker, R., 2001. The 5 reasons XP can’t scale and what to do
about them, Proceedings of the 2nd International Conference on
eXtreme Programming and Flexible Processes in Software Engineering,
Villasimius, Italy, 62-65.

Ebert, C., and Neve, P. D., 2001. Surviving Global Software
Development, IEEE Software. 18, 2, 62-69.

Elssamadisy, A., 2001. XP On A Large Project – A Developer’s
View, Proceedings of the XP Universe 2001

Fagan, M. E., 1986. Advances in Software Inspections, IEEE
Transactions on Software Engineering. 12, 7, 744-751.

Fowler, M., 2003. The New Methodology, http:/ /
www.martinfowler.com/articles/newMethodology.html. Retrieved: Sep-
tember 3, 2003.

Herbsleb, J., Root, D., and Tomayko, J., 2003. The eXtreme
Programming (XP) Metaphor and Software Architecture (CMU-CS-03-
167), Pittsburgh, PA, USA: School of Computer Science, Carnegie
Mellon University.

Innovations Through Information Technology 233

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Horowitz, A. S., 2003, September 15. Canada: Safe, secure and
‘near-shore’. ComputerWorld.

Jeffries, R., 2001. What is Extreme Programming?, http://
xprogramming.com/xpmag/whatisxp.htm. Retrieved: October 3, 2003.

Kaihla, P., 2003, September. The Coming Job Boom. Business 2.0.
Kling, J., 2003, September 15. IT’s Global Itinerary: Offshore

Outsourcing Is Inevitable. ComputerWorld.
Larman, C., and Basili, V. R., 2003. Iterative and Incremental

Development: A Brief History, Computer. 36, 6, 47-56.
Mezick, D., 2003, August 18. Outsourcing 2.0: Collaborative

Development. ComputerWorld.
Murru, O., Deias, R., and Mugheddu, G., 2003. Assessing XP at a

European Internet Company, IEEE Software. 20, 3, 37-43.
Perez, J. C., 2003, January 30. Gartner: Offshore outsourcing gains

steam. ComputerWorld.
Rasmusson, J., 2003. Introducing XP into Greenfield Projects:

Lessons Learned, IEEE Software. 20, 3, 21-28.
Rothman, J., 2003, September 15. 11 Steps to Successful Outsourcing:

A Contrarian’s View. ComputerWorld.
Schuh, P., 2003. Recovery, Redemption, and Extreme Program-

ming, IEEE Software. 18, 6, 34-41.
Simons, M., 2002. Internationally Agile, InformIT.
Thibodeau, P., 2003, August 18. Soviet Skills Draw R&D Work.

ComputerWorld.
Vijayan, J., 2003, September 15. India Inc., Still Going Strong.

ComputerWorld.
Williams, L., and Cockburn, A., 2003. Guest Editors’ Introduction:

Agile Software Development: It’s about Feedback and Change, Com-
puter. 36, 6, 39-43.

Williams, L., and Kessler, R., 2000. All I Really Need to Know
About Pair Programming I Learned in Kindergarten, Communications
of the ACM. 43, 5.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/extreme-outsourcing/32341

Related Content

Model-Driven Engineering of Composite Service Oriented Applications
Bill Karakostasand Yannis Zorgios (2011). International Journal of Information Technologies and Systems

Approach (pp. 23-37).

www.irma-international.org/article/model-driven-engineering-composite-service/51366

Signal Processing for Financial Markets
F. Benedetto, G. Giuntaand L. Mastroeni (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 7339-7346).

www.irma-international.org/chapter/signal-processing-for-financial-markets/112431

Clique Size and Centrality Metrics for Analysis of Real-World Network Graphs
Natarajan Meghanathan (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

6507-6521).

www.irma-international.org/chapter/clique-size-and-centrality-metrics-for-analysis-of-real-world-network-graphs/184347

Rough Set Based Similarity Measures for Data Analytics in Spatial Epidemiology
Sharmila Banu K.and B.K. Tripathy (2016). International Journal of Rough Sets and Data Analysis (pp. 114-

123).

www.irma-international.org/article/rough-set-based-similarity-measures-for-data-analytics-in-spatial-

epidemiology/144709

Hybrid Air Route Network Simulation Based on Improved RW-Bucket Algorithm
Lai Xin, Zhao De Cun, Huang Long Yangand Wu D. Ti (2022). International Journal of Information

Technologies and Systems Approach (pp. 1-19).

www.irma-international.org/article/hybrid-air-route-network-simulation-based-on-improved-rw-bucket-algorithm/304808

http://www.igi-global.com/proceeding-paper/extreme-outsourcing/32341
http://www.irma-international.org/article/model-driven-engineering-composite-service/51366
http://www.irma-international.org/chapter/signal-processing-for-financial-markets/112431
http://www.irma-international.org/chapter/clique-size-and-centrality-metrics-for-analysis-of-real-world-network-graphs/184347
http://www.irma-international.org/article/rough-set-based-similarity-measures-for-data-analytics-in-spatial-epidemiology/144709
http://www.irma-international.org/article/rough-set-based-similarity-measures-for-data-analytics-in-spatial-epidemiology/144709
http://www.irma-international.org/article/hybrid-air-route-network-simulation-based-on-improved-rw-bucket-algorithm/304808

