An Analysis of Co-Operations between Software Firms: An Economic Perspective

Edward W.N. Bernroider
Assistant Professor, Department of Information Business, Vienna University of Economics and Business Administration, Aug. 2-6, 1190 Vienna, Austria, edward.bernroider@wu-wien.ac.at

Volker Stix
Assistant Professor, Department of Information Business, Vienna University of Economics and Business Administration, Aug. 2-6, 1190 Vienna, Austria, volker.stix@wu-wien.ac.at

ABSTRACT

This paper confronts the consensus building on the importance of co-operation between firms, particularly software enterprise. It is based on an empirical study of the Austrian computer software industry, showing three types of interfirm co-operations and their diffusion, factors affecting the extent of co-operation, and the impact on business success. Most of the assumed influences on the amount of co-operations were supported by the data analysis, e.g. the level of IT staff recruitment problems. Evidence was found to support the view that a higher level of co-operation intensity leads to better business performance. Due to the highly globalize nature of the software industry the findings can also be very informative for other geographical areas, esp. for other European countries.

INTRODUCTION

In the last decades the software market has shown rapid growth, together with an acceleration of technological change and innovation (EITO, 1999, 2000, 2003). Against the background of globalisation more intense competition has created many corporate challenges, especially threats. To survive in this new environment, many firms have had to re-organise and become more responsive to change (Vickery, 1999).

Central to globalisation is firm-level innovation and the search for productivity improvements in order to achieve international competitiveness. Academic literature reports that faster innovation and a higher productivity is fostered by more cross-border operations, increased inter-company collaboration and joint ventures (DTI, 2001; Keeble, 1996; Naishbriti, 1995; Nowak & Grantham, 2000; Vickery, 1999). (Naishbriti, 1995) predicted that large organizations have re-constituted themselves as a collection of small companies, respectively business networks that will survive and flourish. (Keeble, 1996) stated that collaborative networking carried a positive implication for long-term competitiveness of SMEs in Great Britain in the 1990s. More specifically for the software sector, authors (Nowak & Grantham, 2000) reported that software companies are increasingly reliant on strategic alliances to remain competitive. (Mendelson, 2000) has shown that there is a positive correlation between organizational characteristics of a software firm, in particular the extent and quality of business co-operations, and success criteria such as turnover per employee.

Technological advances are helping to implement interfirm co-operations. They have enhanced the abilities to share data and to communicate (Grover & Vaswani, 2000); computer based systems have emerged for co-operative work (Alavi, 1993; Kraemer & King, 1988; Poltrock & Engelbeck, 1999).

In this paper the focus lies upon relations between software companies, by which they seek to improve the output and quality of their products. Current forms of interfirm co-operation, factors affecting the extent of co-operation and the impact on business success will be examined to confront the consensus building on the importance of co-operation between firms, particularly software enterprises.

RESEARCH OBJECTIVES

The goal of this article is to outline the structure, intensity, and influencing factors of co-operations between software firms in Austria as well as dependent performance measures. It was assumed that a number of characteristics (see section ‘Factors affecting the co-operation intensity”) have an impact on the amount and type of co-operations taking place. As a second step we tried to analyze the effect of co-operating on the performance of the organization.

The methodology employed to investigate these research topics is an empirical study of the Austrian computer software industry, which was carried out in the year 2000. The empirical findings will be presented in the same order as the points presented above. The results shown in this paper represent only a part of the wider field of research topics considered by the undertaken empirical survey.

DATA ACQUISITION

For both, the pre-liminary (for screening purposes) and the main analysis, the design of a questionnaire which was validated in several pre-tests was necessary. For the pre-liminary phase random sampling was employed and the 600 chosen companies were contacted by telephone. The achieved response rate was 70.4%. Some companies could not be contacted, because they had ceased to exist, the address was wrong or could not be found, etc. These neutral dropouts were considered in the calculation of the response rate and therefore did not decrease the return quota. On completion of the preliminary analysis structured face-to-face interviews followed in the main step of analysis, which based on a stratified and disproportional sample with subgroups according to company size. The rate of return for this second and main step of the study was 55.6%. After completing both, the pre-liminary and main step of analysis, non-response effects were examined. The analysis (regarding known distributions of variables of the Austrian computer software market such as the type of the organization) revealed no significantly different characteristics between non-respondents and respondents.

COMPANY SIZE DISTRIBUTION

The empirical data showed a strong overbalance of smaller software enterprises in Austria: Micro-enterprises (ME) account for 55.7% of the
Austrian software organizations, 32.2% can be attributed to SMEs and 12.1% to large enterprises (LE). Classification was performed using data on number of employees, turnover and independence following the definition proposed by the Commission of the European Community (EC, 1996). The applied criteria and the approximated overall number of software enterprises in Austria are presented in Table 1. In Austria the average firm size has declined in line with smaller firms entering the industry. Especially at the end of the 1980’s and the early 1990’s annual growth rates of over 20% (measured by number of enterprises in Austria) caused the decline of average firm size.

FORMS AND EXTENT OF INTERFIRM CO-OPERATION

Table 2 denotes the different types of co-operations analysed in the empirical survey. The simple exchange of knowledge resources (no. 1) utilized by 52.3 % of the software firms is regarded as co-operation form at the lowest level. Co-operations in sales/distribution undertaken by 59.2 % of the enterprises (no. 2) already reflect a next step towards the highest level of cooperating: The development of long-lasting co-operations between firms at adjacent stages in the value chain (no. 3, e.g. collaborative software development), which is carried out by 49.4 % of the software firms in Austria. Other, unspecified types of co-operation counted up to around 13%. Our first assumption, that collaboration in the context of sales/distribution is the prevalent form of co-operation is supported by the data. But the little differences between the extent of co-operation for each type are surprising, respectively the high rate of collaborative value chains. For the next steps of analysis we have consolidated the types of co-operations into a variable showing the level of co-operation intensity for each enterprise following the order described above. This calculation showed us that 20% of the enterprises do not co-operate with partners, 6.2 % apply knowledge transfer only, 24.5% go to the level of collaborative sales/distribution and may also utilize knowledge transfer with partners, and finally, 49.2 % are engaged in collaborative value chains (and may also co-operate in the two lower graded scenarios).

Table 2 also shows the changes in the co-operation extent from the viewpoint of different firm sizes. It can be seen that the size of an organization has a positive effect on the co-operation, respectively collaboration activities. For the type of collaborative value chains the dependency is highly significant (as shown by the calculation of the Chi-Square statistic with a significance level of 0.005).

FACTORS AFFECTING THE CO-OPERATION INTENSITY

To test the independence of responses between companies with different co-operation intensities, the Kruskal-Wallis H-Test was applied, which is a non-parametric equivalent to one-way ANOVA. It tests whether several independent samples are from the same population, assumes that the underlying variable has a continuous distribution, and requires only an ordinal level of measurement. The strength of a relationship between variables and the co-operation intensity was analyzed by calculating the Spearman rank correlation coefficient, which is used when ordinal scaled variables are involved.

It was assumed that the following factors have an impact on the amount and type of co-operations taking place (the significant results were summarized in Table 3):

- **Size of an Organization**
 As already indicated, the size of an organization has an impact on the co-operation intensity. The analysis scheme described above validates this assumption (see Table 3). In general, the co-operation activities get more intense with in large organizations.

- **Strategic target of increasing turn over**
 We assumed that the strategic target “of increasing turn over”, respectively its priority as defined by the management of the software enterprise, has a positive influence on the co-operation intensity. This assumption was supported by the data (see Table 3).

- **Expenses on research and development**
 During the interviews, managers had to assess the amount spent each year on research and development. Our assumption concerning a possible relationship with the co-operation intensity was not supported by the data analysis.

- **IT position vacancies**
 The IT man power shortage could be a good reason for companies to co-operate as a means to overcome this industry specific weakness. In our study, the company had to assess its IT job vacancies. The data showed that a high number of vacancies have a positive influence on the amount and intensity of co-operations taking place (see Table 3).

- **Internal success factors**
 We were interested in a possible dependency between co-operating activities and certain internal success factors of the organisation, respectively organizational strengths and weaknesses. A well organised firm structure (success factor 1) may have a positive influence on co-operation activities. On the other hand, knowledge exchange and collaborative software development may increase the know-how embedded in company (success factor 2), respectively foster employee qualification (success factor 3), or improve access to new technologies (success factor 4). Improved capabilities should lead to better product quality (success factor 5). These inquiries endogenous success factors had to be rated by managers of Austrian software companies on a scale from 5 (very positive) to 1 (very negative) as perceived in their own organisation. The data analysis followed the same pattern as described before and showed that almost every analysed criterion seems to be dependent on the co-operation intensity and many show correlations with high significances (see Table 3). The perceived situation regarding employee qualification and access to new technologies improves with the co-operation intensity of an organisation. Taking a closer look at the 3 types of co-operations recorded, we see that product quality seems to be positively influenced by knowledge exchanges between enterprises.

To examine the effect demonstrated by the six criteria as a whole a multiple discriminant analysis (MDA) was undertaken using the statistical software package SPSS. The primary objectives of MDA are to understand group differences and to predict the likelihood that an entity (respectively an organization) will belong to a particular group (in this article characterized by the intensity of its co-operations) based on several scaled independent variables (Hair, Anderson, Tatham, & Black, 1998). For the application of MDA the sample was divided randomly into two sub-samples, one used for estimation of the discriminant functions (analysis sample) and another for validation purposes.
Table 3: Identified discriminating characteristics by Kruskal-Wallis H-Test and Spearman Rank Correlation Coefficients

<table>
<thead>
<tr>
<th>No.</th>
<th>Variable</th>
<th>Independence Significance (H-Test)</th>
<th>Correlation Coefficient (Spearman)</th>
<th>Significance (Spearman)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Size of Organisation</td>
<td>0.008</td>
<td>0.246</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>Strategic Goal: Increasing turn-over</td>
<td>0.072</td>
<td>0.183</td>
<td>0.016</td>
</tr>
<tr>
<td>3</td>
<td>IT job vacancies</td>
<td>0.019</td>
<td>0.242</td>
<td>0.002</td>
</tr>
<tr>
<td>4</td>
<td>Internal success factor: Employee qualification</td>
<td>0.077</td>
<td>0.193</td>
<td>0.011</td>
</tr>
<tr>
<td>5</td>
<td>Internal success factor: Access to new technologies</td>
<td>0.006</td>
<td>0.209</td>
<td>0.006</td>
</tr>
<tr>
<td>6</td>
<td>Internal success factor: organisational structure</td>
<td>0.024</td>
<td>-</td>
<td>not significant</td>
</tr>
<tr>
<td>7</td>
<td>Internal success factor: product quality</td>
<td>0.064</td>
<td>-</td>
<td>not significant</td>
</tr>
</tbody>
</table>

CONCLUSION

The data analysis has shown that the Austrian software companies are widely integrating their operations with external business partners. Almost every second organization is already exploiting joint activities with business partners at various stages of their value-chains.

We have also shown that a number of assumptions concerning possible influencing factors on the level of co-operation intensity were supported by our analysis. Each of the stated factors viewed separately has a positive influence on the amount of co-operations taking place, e.g. the company size or the level of IT staff recruitment problems. Co-operating companies also seem to have better access to new technologies. Evidence was found to support the view that a higher level of co-operation intensity leads to better business performance. Co-operations even up to the level of collaborative value chains seem to be a sound basis for software companies to sustain in their very dynamic and competitive business environment. Software firms are shaping the nature of their relationship from simple knowledge exchanges towards productive collaborative software development to fully exploit the potential benefits indicated in this paper. Due to the highly globalizes nature of the software industry the findings can also be very informative for other geographical areas, esp. for other European countries.

REFERENCES

Related Content

Comprehensive Survey on Metal Artifact Reduction Methods in Computed Tomography Images
www.irma-international.org/article/comprehensive-survey-on-metal-artifact-reduction-methods-in-computed-tomography-images/133535

Identification of Heart Valve Disease using Bijective Soft Sets Theory
www.irma-international.org/article/identification-of-heart-valve-disease-using-bijective-soft-sets-theory/116043

Health Information Technology/BioDefense Needs to Fight Bio-Terrorism
www.irma-international.org/chapter/health-information-technologybiodefense-needs-to-fight-bio-terrorism/112767

The E-Interview in Qualitative Research
www.irma-international.org/chapter/interview-qualitative-research/75954

A RNN-LSTM-Based Predictive Modelling Framework for Stock Market Prediction Using Technical Indicators
 Shruti Mittal and Anubhav Chauhan (). *International Journal of Rough Sets and Data Analysis* (pp. 1-13).
www.irma-international.org/article/a-rnn-lstm-based-predictive-modelling-framework-for-stock-market-prediction-using-technical-indicators/288521