
774 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
We identify the UML diagrams and elements that must be used to define an
analysis pattern and we explain how analysis patterns defined in this way
can be used in the context of the Unified Process. Our proposal is illustrated
by means of an example aimed at modelling a generic sports competition.

1. INTRODUCTION
A pattern identifies a problem and provides the specification of a generic

solution to that problem. The use of patterns in software development increases
reusability of software components and reduces errors of the software deliv-
ered. Patterns can be used at each stage of the software development process.
Thus, we distinguish among analysis, architectural, design and language pat-
terns.

A design pattern [GHVJ95] describes the structure of the solution to a
problem that appears repeatedly during software design and the interaction
between the different components involved in the solution. Therefore, a de-
sign pattern is domain-independent since it is applicable to any software sys-
tem, provided that the problem addressed by the pattern is encountered during
the design of that system.

The analysis model constitutes a permanent model of the reality in itself
and, as such, it is independent of a particular implementation technology [Pre00,
Mac01]. Therefore, an analysis pattern must describe both the structural and
dynamical properties of a basic, generic, application domain as perceived by
the system user. In this sense, an analysis pattern is application dependent
since its semantics describes specific aspects of some domain or software sys-
tem [Fer98].

The general structure provided by an analysis pattern can be used to
define several software systems sharing the features described by the pattern.
Developing a particular system applicable to a specific application domain
corresponds to adapt the pattern to take the specific aspects of the domain into
account.

Analysis patterns provide several advantages to software development.
First, they reduce the costs of information systems development because of the
reuse of existing solutions. Second, they speed up the development of concrete
analysis models that capture the main requirements of a generic application
domain. Third, they improve the quality of analysis models by favouring reus-
ability and reducing software errors.

Although some authors like [Fer98, Fow99, FY00] have used the UML
to show examples of analysis patterns, it does not exist yet, as far as we know,
a precise statement of the UML diagrams that must conform an UML analysis
pattern. This is the main goal of this paper: to determine the UML diagrams
that must be specified to define an UML analysis pattern.

Moreover, we identify some UML elements that may not be present in
these diagrams to ensure we develop an analysis model and we explain how
our analysis patterns can be used according to the Unified Process [JBR99,
Lar02]. Our proposal is illustrated by means of an analysis pattern that models
a generic sports competition.

2. ANALYSIS PATTERNS AND THE UML
Unfortunately, we do not find a clear agreement regarding the kind of

patterns that can be defined at the analysis level of information systems devel-
opment. For instance, [Fow97] proposes analysis patterns that define appro-

priate solutions to model specific constructs that may be found during the
specification of different information systems. On the other hand, [FY00] pro-
poses patterns that define a conceptual model for a single information system
domain.

In fact, we may distinguish two different approaches regarding the defi-
nition of patterns at the analysis stage of the software development process:
conceptual modelling patterns and analysis patterns. A conceptual modelling
pattern is aimed to represent a specific structure of knowledge (for instance a
Part-Of relationship) that we encounter in different domains. An analysis pat-
tern specifies a generic, domain-dependent, knowledge required to develop an
application for specific users.

Our notion of analysis patterns coincides with that of [FY00]. [Fow97]
patterns correspond more to conceptual modelling patterns, according to our
terminology.

Unfortunately, previous work does not provide, to our knowledge, a suffi-
cient proposal to define analysis patterns in the UML. For instance, [Fer98, p.
37] states that “an analysis pattern is a set of classes and associations that have
some meaning in the context of the application” but their examples are illus-
trated not only by means of class diagrams, as we could expect from the previ-
ous definition, but also with state and sequence diagrams.

Later on, [Fow99] develops UML versions of analysis patterns that ap-
pear in some chapters of [Fow97]. However, only class diagrams are translated
into the UML and, unfortunately, no discussion is given about which of the
several UML diagrams should be used to define analysis patterns in this lan-
guage.

More recently, [FY00, p. 184] states that “a semantic analysis pattern is
a pattern that describes a small set of coherent use cases that together describe
a basic generic application”. It provides some examples of analysis patterns
described with analysis class diagrams, state diagrams, sequence diagrams,
etc. However, their sequence diagrams specify object interaction and this can
only be done if responsibilities are assigned to objects during the analysis
stage. Taking this decision involves design and technological issues and, in
this way, it is not possible to define an analysis model which is technologically
independent.

3. DEFINITION OF ANALYSIS PATTERNS IN THE UML
According to our previous definition, we view an analysis pattern just as

a conceptual schema (an analysis model) of a generic application. The UML
includes nine types of diagrams to represent different parts of the system
[BRJ99]. However, some of them are not useful to define an UML analysis
model since they address technological issues. For instance, a deployment dia-
gram shows the configuration of run-time processing nodes and, thus, it is not
independent of a particular implementation environment. For similar reasons,
object, activity and component diagrams can be discarded to define analysis
patterns in the UML.

Therefore, an analysis pattern should be defined in terms of use case
diagrams, class diagrams, interaction diagrams and statechart diagrams. How-
ever, each of these diagrams may be defined at different stages of the develop-
ment process and the way they are defined (and also the UML constructions
used to define them) depends on the particular stage we are involved in. For
this reason, the definition of analysis patterns in the UML requires a clear
statement of the boundary between analysis and design.

Analysis Pattern Definition
in the UML

Ernest Teniente
Universitat Politècnica de Catalunya

Dept. Llenguatges i Sistemes Informàtics
Jordi Girona 1-3, 08034 Barcelona (Catalonia)

teniente@lsi.upc.es

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 775

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Craig Larman [Lar98] provides a good criteria that can be used to define
this boundary. His main idea, also sketched in [Boo96, FS97], is to define the
system behaviour as a ‘black box’ at the analysis level, before proceeding to a
logical design of how a software application will work. According to this cri-
teria, operations responding to external events are not assigned to classes dur-
ing analysis and they are recorded in an artificial type named system.

We also assume that the UML diagrams that define an analysis pattern
are non-redundant [CST02]. A UML specification is redundant when a cer-
tain aspect of the system is defined in more than one diagram. As shown in
[CST02], non-redundant conceptual schemas contribute to desirable proper-
ties of the specifications and facilitate software design.

3.1 The Use Case Diagram
Use cases define possible ways users may use a system to meet their

goals. They are documented by means of the Use Case Diagram, which iden-
tifies the main ways a user may interact with the system, and the Use Case
Definition, which describes the typical course of events that occurs as a result
of actor actions required to perform a particular execution of a use case and
the system responses to them.

Use cases are mainly used to model the context and the requirements of
the software system. However, we believe that it is useful to define, at least,
the use case diagram in an UML analysis pattern since it gives a clear idea of
all functionalities provided by the software system and the relationships among
them. On the contrary, we do not see a clear contribution of use case defini-
tions to UML analysis patterns since the information they provide is also stated
by means of system interaction diagrams and operation contracts as we will
see in Section 3.3. In this sense, we regard use case definitions as a mean to
define those diagrams more than as a permanent model in itself.

The use case diagram of Figure 3.1 defines the most important
functionalities of a generic sports competition.

We hope the name of the use cases is clear enough to describe intuitively
its intended functionality. Note that some of the use cases require the execu-
tion of other use cases to perform satisfactorily. Thus, for instance, to add a
new player and to add a new referee requires to add them also as a new person.
Moreover, removing a team requires to remove all its players. We provide a
more precise definition of the behaviour of some of these use cases in Section
3.3.

3.2 The Analysis Class Diagram
The Analysis Class Diagram specifies the structural properties of the

classes that model concepts of the problem domain. It is described by means
of class diagram in which no operations are defined and it is complemented
with textual constraints, that define conditions that the information must sat-
isfy but that can not be graphically specified in the UML, and with derived
attributes, that specify information that can be computed from other elements
of the class diagram.

Figure 3.2 shows an analysis class diagram of a generic sports competi-
tion. For the sake of simplicity we assume that we model a single league and

that a team plays exactly two times (home and away) with any other team. A
match is defined by two teams and it is played in a certain turn. A match can
be scheduled or played. If it is played, we also know the points of both teams
that played the match.

Several people are involved in the sports competition. They can be clas-
sified into either players or referees. A player belongs to a team and may play
several matches. Clearly, a player may not play a match if his team is not
involved in the match. Moreover, a player may not be also a referee of the
competition.

The formalization in the OCL of some textual constraints and derived
attributes of the previous example would be:
context Team inv: — two different teams may not have the same name

Team.allInstances -> forAll(t1, t2 | t1 <> t2 implies t1.name <> t2.name)
context Match-Player inv:

— A player may not play a match if his team is not involved in the match
(self.Player.Team = self.Match.home) or (self.Player.Team =
self.Match.away)

context Match inv: — the two teams that play a match are different teams
self.home <> self.away

context Played inv: — derivation rule for p-home
p-home = self.match-Player -> select (mp | mp.Player.Team = self.home)
-> sum()

As we said, operations are not specified in the analysis class diagram
since we regard the system as a black box during the definition of analysis
patterns. Moreover, there are several other elements that can be used in the
definition of UML class diagrams in general but that do not make sense for
analysis class diagrams. For each of such elements [OMG01], we briefly jus-
tify why this is the case:
- Attribute visibility: it specifies whether an attribute can be used by other

classifiers. This concept does not model the problem domain but the so-
lution domain and, thus, it does not make sense at the analysis level.

- Navigability: it states whether an association may be traversed towards
other instances in that connection. However, at the analysis level, asso-
ciations represent existing relationships among real-world concepts. There-
fore, all associations can be traversed in all possible directions and so we
do not have to specify its navigability.

- Association-end visibility: it specifies the visibility of the association
end from the viewpoint of the classifier on the other end. Visibility is
required to be able to navigate from one end of an association to another.
As we have just seen, navigability is a design issue which is not relevant
at the analysis level.

Figure 3.1 – Main use cases for a generic sports competition

�

��������

����	
������

������	
�������

���������������������

������������������	�

���������	
����
�	�����
��

�����������

���������

��������������

������������

�������	��

�������� �

�������� �

���!�����������
��������

�������� �

Figure 3.2 – Analysis class diagram for a generic sports competition

� �����

��������	
����������

"� �����������������#�$����%�����&'�$����%��"����&'�$����	�%�(���"��&�
"�)�(���������	��(���������������������������	��	���	��������������
	�
����������������
"� ������	������������(�������������������������������

"��)������(�����������*�������������������������

(���"��#�+�������
����#��������

�"�����#�,����

����	��

-�

.���/0%��	�(01�

����"�����
*�

(����	�#��������

������
�"����#��������

��������

����#��������

���#��������

-�
����#�,����

������

$�	��&�

$���&�

�"����#�+�������

���2#�3��2�

�����
�����"���-�

����������
4("�	��#�+��0�
4("���#�+��0�

������

.���/	���%��	�(����1�

5��	���"�	�

-�

*�

���"(��#�+����0�

(����#�+�������

�����"������

�����

-�

-�

���������

-�

6007�

������������������

"� ("�	���	��������8�����	��(�������	����������(������	�������	��������	������������

"� ("����	��������8�����	��(�������	����������(������	���������������	������������

776 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

3.3 System Interaction Diagrams and Operation Contracts
When the system behaviour is specified as a “black-box”, it does not

make sense to specify the interaction among objects to fulfil a given function-
ality but just to specify the interaction among the external actors and the sys-
tem regarded as such “black-box”. This is why we talk about system interac-
tion diagrams.

A system interaction diagram shows the external actors that interact with
the system, the system as a ‘black box’, system events that actors generate,
their order and the system response. Interaction diagrams may be illustrated
either by means of collaboration or sequence diagrams. The following sequence
diagram defines the interaction required by the use case NewTeam:

This interaction required to execute newTeam is very simple. In fact, it is
enough to specify the name and the city of the team to register a new team.

System interaction diagrams are complemented with operation contracts
to precisely specify the system response to the external events. There is a one
to one correspondence between events and operations and, therefore, we have
to specify an operation contract for each event occurring in a system interac-
tion diagram.

In the UML, an operation contract includes the signature of the opera-
tion; its precondition, i.e., a set of conditions that are guaranteed to be true
when the operation is executed; and its postcondition, i.e., a set of conditions
that hold after the operation execution. The following contract specifies the
semantics of the operation newTeam:
context System :: newTeam (name: String, city: String)
post: t.oclIsNew () and t.oclIsTypeOf (Team) and t.name = name and t.city =

city

As a consequence of the execution of this operation it happens that an
object t of the class Team is created, with attribute values corresponding to the
operation parameters name and city. Note that, since we consider that our
UML analysis pattern is non-redundant, the previous operation contract must
not check that any other team identified by name exists because this is guaran-
teed already by the textual constraints of the analysis class diagram.

There are several elements that can be used to define operations on the
UML but that do not make sense at the analysis level. For each of such ele-
ments [OMG01], we briefly justify why this is the case:
- Assigning operations to classes: it can only be done if responsibilities

are assigned to objects during analysis. However, this decision involves
design issues and, therefore, it makes difficult to define an analysis model
which is technologically independent. Moreover, it does not make much
sense to specify the internal behaviour of an information system when it
is regarded as a “black-box”.

- Operation visibility: it specifies whether an operation may be invoked
by other operations. It involves modelling the internal behaviour of the
system and, thus, it does not make sense for analysis patterns. In fact, at
this level we assume that all operations are public since all of them can be
executed by external actors.

- Abstract operation: an operation is abstract if it is not implemented in
the class where the operation is defined, i.e. no method for it is provided
on that class. Clearly, this issue involves technological considerations and,
thus, it does not make sense at the analysis level.

- Completeness of postconditions: [Lar02, p. 181] suggests that it is not
necessary to specify completely the postcondition of the operation con-
tracts. However, we disagree with this opinion since we think that the
behaviour of the system can only be precisely specified if we define a
complete set of non-redundant postconditions. Therefore, we believe that
an analysis pattern should contain a complete and non-redundant opera-
tion contract for each event appearing in a system interaction diagram.

Another important aspect that must be considered during the definition
of system interaction diagrams of analysis patterns is the way presentation
details are taken into account. In fact, a system interaction diagram describes
the basic interaction that an actor must perform to execute a given use case,
without going into particular details on how it will be actually performed for a
given interface.

As an example, in the following system sequence diagram we do not care
about whether the user selects the player to be removed from a list of players or
whether he just writes the pers-id of the player on a certain form.

Clearly, presentation details have nothing to do with the concrete seman-
tics of the application. Moreover, different implementations of a particular
application semantics may require different presentation details according to
the specific preferences of the users of each application. Nevertheless, consid-
ering different presentations does not imply any change on the application
semantics.

Another example of a more complex system sequence diagram to specify
the interaction required by the use case RegisterMatchResult, with the corre-
sponding operation contracts, is:

context System :: regMatchResult (h-team: String, a-team: String): Played
post: let m = Match.allInstances -> select (m | m.home = a-team and

m.away = a-team) in
m.oclIsTypeOf (Played) and result = m
context System :: playerResult (m: Played, p-id: Integer, min: Integer, p:

Integer)
post: mp.oclIsNew () and mp.oclIsTypeOf (Match-Player) and
mp.min-play = min and mp.points = p and
mp.Played = m and mp.Player = (Player.allInstances-> select (p | p.pers-

id = p-id))

3.4 Statechart Diagrams
Statechart Diagrams illustrate the states of objects and the behaviour of

these objects in reaction to an event. An analysis pattern must include a
statechart diagram for each object class with an important dynamic behaviour.
As an example, the dynamic behaviour of Match may be specified by means
of the following statechart diagram:

At the analysis level, statechart diagrams are defined by means of proto-
col state machines [OMG01, 2-170]. Each event appearing in a protocol state
machine requires a corresponding operation of the class for which the statechart
diagram is defined. Its behaviour is defined by an operation contract instead of
the specification of action expressions on transitions.

�
���
����������

#����� #������

���	
�������$(���"��#�+������&�

�
���������� ������

��������� ����������������

�
����������������������

#����� #������

���������������$�"����#�������%��"����#�������&#�������

(�����������$�#������%�(��#�+������%��(#�+������%�(#�+������&��-�

�
���������

#����� #������

��������$����#�������%����#�������&�

Information Technology and Organizations 777

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

4. ANALYSIS PATTERNS AND THE UNIFIED PROCESS
The use of our UML analysis patterns does not enter in contradiction

with the incremental and iterative nature of the Unified Process [JBR99, Lar02].
The inception phase of the Unified Process involves the identification of

relevant use cases, which are specified by means of the use case diagram and
the use case definition. Our analysis patterns cover the inception phase since
they provide the corresponding use case diagram, while the behaviour stated
by the use case definition is provided by means of system sequence diagrams
and operation contracts.

During the first iteration of the elaboration phase, system sequence dia-
grams, the analysis class diagram and operation contracts are developed in the
Unified Process. Clearly, this phase is also covered by our patterns since they
include the corresponding diagrams.

Statechart diagrams and some concepts of use case diagrams (like relat-
ing use cases) or the analysis class diagram (like modelling generalization) of
our analysis patterns are usually delayed until the third iteration of the elabora-
tion phase in the unified process (at least in Larman’s interpretation of this
process [Lar02]).

We can conclude, therefore, that our UML analysis patterns cover the
diagrams developed during the inception phase and the first part of the elabo-
ration phase of the unified process. For this reason, given an analysis pattern,
we can apply the unified process as usual by assuming that those steps have
been performed already. In fact, it would be enough to adapt the pattern to take
the specific aspects of the domain where the system is to be developed into
account and, then, proceed with the other phases of the unified process.

5. CONCLUSIONS
We have shown that analysis patterns must be defined in the UML by

means of a use case diagram, an analysis class diagram, system interaction
diagrams with their corresponding operation contracts and statechart diagrams.
We have also identified some UML elements that these diagrams may not
contain to ensure that an analysis pattern corresponds to an analysis model and
we have shown that analysis patterns defined in this way can be used in the
context of the Unified Process.

Our proposal has been illustrated by means of a (partial) example aimed
at modelling a generic sports competition. Since the general structure pro-
vided by an analysis pattern is valid to define several software systems sharing
the features described by the pattern, it is enough to adapt this pattern to de-
velop a software system applicable to any specific sports competition.

ACKNOWLEDGMENTS
This work has been partially supported by the Ministerio de Ciencia y

Tecnología and the FEDER funds, under the project TIC2002-00744.

REFERENCES
[Boo96] G.Booch. “Object Solutions: Managing the Object-Oriented

Project”, Addison-Wesley, 1996.
[BRJ99] G.Booch; J.Rumbaugh; I.Jacobson. “The Unified Modeling

Language User Guide”, Addison-Wesley, 1999.
[CST02] D.Costal; M.R.Sancho; E.Teniente. “Understanding Redun-

dancy in UML Analysis Models”, 14th Int. CAiSE Conference, LNCS 2348,
Springer, 2002, pp. 659-674.

[Fer98] E.B.Fernandez. “Building Systems Using Analysis Patterns”,
3rd Int. Software Architecture Workshop (ISAW3), ACM, 1998, pp. 37-40.

[Fow97] M.Fowler. “Analysis Patterns – Reusable Object Models”,
Addison-Wesley, 1997.

[Fow99] M.Fowler. “Analysis Patterns”, http://www.martinfowler.com/
apsupp/, 1999.

[FS97] M.Fowler and K.Scott. “UML Distilled”, Addison-Wesley,
1997.

[FY00] E.B.Fernandez; X.Yuan. “Semantic Analysis Patterns”, 19th

Int. Conf on Conceptual Modeling (ER’00), LNCS 1920, Springer, 2000, pp.
183-195.

[GHJV95] E.Gamma; R.Helm; R.Johnson; J.Vlissides. “Design Patterns
– Elements of Reusable Object-Oriented Software”, Addison-Wesley, 1995.

[JBR99] I.Jacobson; G.Booch; J.Rumbaugh. “The Unified Software
Development Process”, Addison-Wesley, 1999.

[Lar98] C.Larman. “Applying UML and Patterns”, Prentice Hall,
1998.

[Lar02] C.Larman. “Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Unified Process”, 2nd Ed., Prentice
Hall, 2002.

[Mac01] L.A.Maciaszek. “Requirements Analysis and System Design
– Developing Information Systems with UML”, Addison-Wesley, 2001.

[OMG01] OMG. “Unified Modeling Language Specification”, Version
1.4, September 2001.

[Pre00] R.Pressman. “Software Engineering: A Practitioner’s Ap-
proach”, Fifth Edition. McGraw-Hill, 2000.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/analysis-pattern-definition-uml/32139

Related Content

Digital Social Networks From a Social Capital Perspective
Suparna Dhar, Indranil Boseand Mohammed Naved Khan (2021). Encyclopedia of Information Science and

Technology, Fifth Edition (pp. 1106-1117).

www.irma-international.org/chapter/digital-social-networks-from-a-social-capital-perspective/260253

Social Issues in IT Project Teams
Awie C. Leonardand D. H. Van Zyl (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 777-787).

www.irma-international.org/chapter/social-issues-in-it-project-teams/183789

Social Business Process Modeling
Fadwa Yahya, Khouloud Boukadi, Zakaria Maamarand Hanêne Ben-Abdallah (2018). Encyclopedia of

Information Science and Technology, Fourth Edition (pp. 765-776).

www.irma-international.org/chapter/social-business-process-modeling/183788

An Empirical Evaluation of a Vocal User Interface for Programming by Voice
Amber Wagnerand Jeff Gray (2015). International Journal of Information Technologies and Systems

Approach (pp. 47-63).

www.irma-international.org/article/an-empirical-evaluation-of-a-vocal-user-interface-for-programming-by-voice/128827

Financial Data Collection Based on Big Data Intelligent Processing
Fan Zhang, Ye Dingand Yuhao Liao (2023). International Journal of Information Technologies and Systems

Approach (pp. 1-13).

www.irma-international.org/article/financial-data-collection-based-on-big-data-intelligent-processing/320514

http://www.igi-global.com/proceeding-paper/analysis-pattern-definition-uml/32139
http://www.irma-international.org/chapter/digital-social-networks-from-a-social-capital-perspective/260253
http://www.irma-international.org/chapter/social-issues-in-it-project-teams/183789
http://www.irma-international.org/chapter/social-business-process-modeling/183788
http://www.irma-international.org/article/an-empirical-evaluation-of-a-vocal-user-interface-for-programming-by-voice/128827
http://www.irma-international.org/article/financial-data-collection-based-on-big-data-intelligent-processing/320514

