IDEAGROUPPUBLISHING

= 6P =F

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA

ITP4845

Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

CS-Engine: Development of a Cross
Search Enginefor Multiple
Heter ogeneous Databases

Min Song and Il-Yeol Song*
College of Information Science and Technology
Drexel University
Philadelphia, PA 19104
(min.song, songiy)@Drexel.edu

ABSTRACT

Along with the growth of the Web, users have encountered the issue of
information overload. As the Web becomes more prevalent, users are
faced with a growing information burden. Given this situation, it is critical
for a search engine to provide an “integrated solution” to users. Wth this
in mind, we present the design and implementation of a cross-search
component for CS-Engine (Cross-Search Engine). The CS-Engine allows
users to search heterogeneous, multiple databases with one command.
The CSEngine is distinguished from other search engines in that it allows
users to search both public domain web data and proprietary databases
of a company. The CS-Engine is also different from meta-search engines
because the CS-Engine does not need to trigger other search engines and
trandlate a query for other search engines. Cross-search capability provided
by the CS-Engine alleviates users’ inconvenience of switching among
different databases to satisfy their information needs. We conclude our
paper with technical lessons learned as well as organizational issues
encountered during the development phase.

1. INTRODUCTION

It is difficult to develop a large scale information system due to its
size and complexity. Web-based Information Retrieval (WIR) system is
one of the most difficult systems to develop [3, 11]. Because of the
complexity of the system and the difficulty in indexing and searching
heterogeneous data with different data structures and formats, a WIR
system tends to focus on either publicly available web data or subscrip-
tion-based proprietary data.

With growth of Internet, plenty of web search engines have be-
come available. Existing search engines such as Google and AltaVista,
however, don’t provide users with the capability of searching multiple
databases including proprietary databases. For instance, suppose a user
wants to search both a patent database and web data in public domain
through a single query transaction. EXxisting search engines are not the
user’s first choice to satisfy his’her information needs because the search
engines currently don’'t provide such a capability.

Croft [2] states that one of the top requirements of a search engine
is to provide an integrated solution to the user. Given demand on the
integrated solution by the users, many search engines began to look at
how to manage both many of the existing applications and various
resources with different data structures and formats. One approach to an
integration solution is to index and search multiple heterogeneous data,
and this is where the current engines haven’t explored rigorously.

In this paper, we present the system called Cross-Search Engine
(CS-Engine) using Object Oriented technologies. The search engine is
called Cross-Search because it can search multiple, heterogeneous data-
bases with a single transaction.

We note that meta-search engines also provide cross-searching
capability [6]. CS-Engine, however, is not a meta-search engine. First,
CS-Engine has its own indexing component, which means there is no

Peter P. Chent!
Department of Computer Science
Louisiana State University
Baton Rouge, LA 70803
pchen@lsu.edu

need to trigger other search engines. Second, it is not necessary to
translate a query into another to use multiple search engines. The sec-
ond difference allows the CS-Engine to avoid the problem meta-search
engines encounter in constructing constraint rules imposed on translat-
ing queries by different search engines.

The rest of the paper is organized as follows: Section 2 describes
the overall architecture of CS-Engine. Section 3 illustrates design of CS-
Engine, whereas Section 4 describes the implemented system. Section 5
discusses lessons we learned during the system design and development.
Section 6 concludes the paper.

2.SYSTEM ARCHITECTURE
A typical Web IR system consists of three components: 1) crawler,

2) index, and 3) search component [1]. Our CS-Engine adopts a generic

architecture proposed by Brian and Page [1]. Figure 1 illustrates a sim-

plified overview of CS-Engine architecture. Although this paper aims to
focus on the search component, the other components are mentioned
briefly to help the reader understand the architecture of CS-Engine.

The following seven components constitute the CS-Engine architec-

ture:

1) URLServer: It sends lists of URLSs to be fetched to the crawlers. The
fetched web pages are then sent to the StoreServer.

2) StoreServer: The StoreServer compresses and stores the fetched web
pages into a repository. Every web page has an associated |D number
called a RecordID that is assigned whenever anew URL is parsed out
of aweb page.

3) XML Parser: The XML Parser processes a set of proprietary XML
formatted data before it is fed into the indexer. This component is
developed based on a standard XML parsing library.

4) Indexer: The indexer performs a number of functions. It reads the
repository, uncompresses the documents, and parses them. Each record
consists of RecordSection and TermSection. Each record also contains
a word frequency called WF. The WFs record a set of words, their
positions in document, and term weights. The indexer stores these
WFs into a set of “DBSs’. Each distinct domain data such as biomedical
research XML data or web HTML data can be indexed in a separated
DB, respectively (Web data DB and Proprietary DB). The Searcher
can manage a dynamic list of DBs and search multiple DBs simulta-
neously.

5) URLChecker: The URLChecker reads the anchor file and converts
relative URLs. URLs without domain name specified are converted
into absolute URLS, meeting the requirements of the http- protocol.
This module also serves as a placeholder for our editorial department
to validate a set of chosen URLs.

6) Searcher: The Searcher looks up the Lexicon database and DBs pro-
duced by the indexer and retrieves a set of records. The searcher is run
by a web server and uses the lexicon built by the indexer together with

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Figure 1. The Overall System Architecture. The component surrounded
by dashed lines represent CS-Engine

—»H
] ,

SSSSSS h;qnilcrl

Wehd#aDE Proprictary DB Proprietary DB

‘l-lh,\.ll..

prietary raw XML data,

the inverted index and the DBs to answer queries.

7) HTML Constructor: This component was developed with a standard
XSLT processor. A set of templates for user interface of CS-Engine
was developed in XSL. In the case of displaying the results on the
summary page after the Searcher has retrieved the results in XML
format, a result page in XSL template is transformed to HTML for-
mat by an XSLT processor.

The search component of CS-Engine is inside the dashed line of
Figure 1. In this paper, we emphasize on development of the search
component of CS-Engine.

3.SYSTEM DESIGN

Throughout the development cycle of the system, UML was used
to facilitate communication among developers and to embed object-
orientation in the system. UML diagrams we developed include use
case, class, and sequence diagrams.

3.1. Use Case Diagram

The important UML modeling that provides useful knowledge about
the usage of a system is the use case diagram. Use case diagrams docu-
ment the functionality of a system and users of the system [4]. The
actors are shown as agents who interact the use case with system events.
This use case diagram shows CS-Engine consisting largely of three com-
ponents: 1) crawling, 2) indexing, and 3) searching component.

As illustrated in Figure 2, there are four main actors in the CS-
Engine: 1)spider - crawling web data in public domain, 2)indexer - index-
ing public domain data as well as proprietary data, 3)search engine -
delivering the query through CGl, looking for relevant documents, and

Figure 2. Use Case Diagram

TS
% <<includex>
-

<<includes >

o 7 deliver query to SearchHandler
CS-Engine

<<includes:

1
| T T =dmdudes
provide query
user

indexer

Information Technology and Organizations 601

displaying results, and 4)user - providing the query. In order to manage
multiple, heterogeneous databases in an effective way, the following two
include use cases were designed: 1) index proprietary data and 2) index
public domain data. The index proprietary data use case involves pars-
ing and indexing the company’s data in an XML format. The index
public domain data use case pertains to spidering and indexing the web
sites in the public domain.

3.2 Class Diagram

In this section, we present the structure of CS-Engine at class
diagram level and show how design patterns are used in the design of the
CS-Engine. Class diagrams provide a static representation of the struc-
ture of a system. Class diagrams appear in varying levels of detail de-
pending on the phase of the lifecycle. Figure 3 depicts a high-level
conceptual class diagram of CS-Engine.

Design patterns were introduced during the design phase to provide
solutions that can be applied in various circumstances that CS-Engine
encounters.

To design a search component for CS-Engine, the following two
design patterns were chosen: 1) Factory and 2) Strategy. The Factory
design pattern was utilized to create a set of strategies to be processed in
the web environment [7]. The classes of CgiStrategyFactory and
HandlerFactory in Figure 3 were implemented with Factory pattern.
The Strategy design pattern was adopted to process different business
logics such as creating html template and initiating query session. The
classes implemented using Strategy pattern are CgiStrategy and its sub-
classes, as well as EngineHandler-and its subclasses.

4.SYSTEM IMPLEMENTATIONAND DESCRIPTION
In this section, we describe how the CS-Engine works in terms of
the system components.

4.1. CGl Component

Given that a CGI program is executed once per request and can be
executed many times per second on a heavily loaded server, minimizing
start-up time for the CGlI is an important consideration. For this reason,
the list of filters, if possible, should be initialized statically at link time.
This can be accomplished by creating an array of <name, value> pairs
where the name is a filter name and the value is a function pointer that
can be invoked to create a filter. Using this hash table, a CgiFilterFactory
class can be defined that takes such a table as its sole constructor argu-
ment and searches the table whenever a new filter is requested. Note that
the caller is expected to check for a null return value in case the speci-
fied name does not correspond to a known filter.

Figure 3. A class diagram for CS-Engine

- CgiRequest CgiRespanse
XMLEntity
1 [~cookie
e ~URI 1 1t 1 |-header
-value =
" +CaiRequest CoistrategyFactary| [icgiRespanse
addATTEE Ute] +get ~CClRequest :
+addchild) +getQueryString (1 -CGlResponse +sendResponsel
XMLEntity() +~Cgikequest(y +setFilterNote()
-+ XMLERtity() = 3
. + getCoistrategy 0 +-CgiResponsef)
i Cgistrategy
1 T
Strategy.name
Trategy P
+getiame()
+sethiame()
Cg y Errorl rategy QueryStrategy

XsLstrategy
~caioption —errorCode
~cginame ~errorMessage

-severname

FBUTdSuBTrEe]
+execute

+XMLStaticTextFilter()
-+ ~XMLStaticTextFilter()

£ T Fexecute) ol
+execute) +5erverConnectFilter))
~ErrorMessageFilter() + ~ServerConnectFilter()

+XSLFileer)
+~XSLFilter(

1

EnginaConfig Tndexinfo

Fieldinfo

“nofields
—stemming

D8 _ame
1 |-index_type

~m_config

8 TERGINECGATB0
["|+getField(: Fieldinfo
4 d Indexinfo +name() : stri
+getkML{) - XMLEntityd +path() : string 1
T

FT5D11St0 - boolean
0 boolean o
+name() : string
+prefix() : string

2 PersistDeamon
EngineHandler | 1 HandlerFactory | 1

“engine_contig T T
i

e Fcreaterandler) Tconnect z
+getHandlerg +readReply(

+sendRequest(

Fexecute
EngineHandler)

i

1
GetDBHandler
D _settng

[T
QueryHandler ShutdownHandler

—quEry _type —connection_open

Texecute] Texecutel Texecute])
+GerQueryHandler(- EngineConfig +ShutdownHandler(- EngineConfigd +GetDBHandler(: EngineConfigd
+~GerQueryHandler() -+ ~shutdownHandler +~GetDBHandler(

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

602 Information Technology and Organizations

4.2. QueryHandler and DatabaseHandler Components

The backend server can be a persistent server that performs queries
against indexes. All requests and responses between the backend server
and its clients are XML documents. The server is designed as a C++ class
library, which accepts parsed XML requests and generates parsed XML
responses.

The backend server is also implemented using the Strategy pattern.
Individual strategy objects (called handlers) are invoked in response to
each request [9]. The choice of handler for a particular request is based
on the root node of the request in XML. The main functionality of the
server involves executing queries against arbitrary collections of in-
dexes and returning the results of those queries. Each query is specified
using an XML request syntax. The following example illustrates some
possible tags in a query:

The scenario is that a user enters a query with a demand of getting
an exact match as well as a partial match. With QueryHandler and
DatabaseHandler Strategy patterns, multiple Boolean queries can be con-
ducted with a probabilistic query in parallel against multiple target in-
dexes. Also, the fields included in the result set, as well as the range of
documents returned in the result set, can be specified as part of the
query.

4.3. XSL Component for HTML page generation

CGI maintains a directory containing template XSLT template
files. Every possible response page that CGI can generate has a corre-
sponding template file. Some responses, such as requests to edit query
terms or show a start page, will not require interaction with the backend
server. Any page requiring query results needs interaction with the
backend server to obtain search results. XSLT combines an XSL tem-
plate file with an XML data set to produce an output file (in our case
HTML page).

As illustrated in Figure 4, CS-Engine allows the user to edit either
Boolean or probabilistic queries. If the query that the user types in is
surrounded by a single quotation, the CS-Engine interprets it as a proba-
bilistic query; otherwise, all queries are assumed to be Boolean queries.
All the HTML pages are constructed dynamically by XSL templates
based on XML format input. Once the query is executed, CS-Engine
displays a set of summary pages containing information about each hit
found by a query. Figure 5 also shows that CS-Engine enables the user to
restrict search results to particular sets of fields specified at retrieval
time to enhance performance. As illustrated in Figure 4, a graphic image
displayed next to the retrieved records shows what database the re-
trieved document comes from. If the user clicks on individual hyperlinks,
CS-Engine takes the user to the target web sites with matched terms
highlighted and a return button to the summary page.

Figure 4. Search Page of CS-Engine

CS3-Engine Results

Publicdanain web data

Filer pucaey by clicking an ome of tha wob rezawos gyper baw:

ﬁr‘ﬁ?s‘?‘nﬁﬂj] rovame & ns:mm'

Dacumest 110 6 of for quezy 'Niomedical .
‘Rﬂriewd[‘rmwd mz\[I o 1

e Elemert ndes: Cageer_Points
ied Credit Grade_PaioeGzsle St

CURREHT FILTER 'g‘ Z

0|

&l Doguments by

Relevance ﬁ

SEARCH TERMS

FESF_TEF Det. Eleavent Index Conc excrstion D
£ Min i_Type M

biorned: &

. ¢ Mame The full neme o each
ot code. For example: the full e for the.

4.4 Indexer Component

As described earlier in the paper, with the framework proposed by
this paper, both internal and public available data are indexed by the
indexer component of the system. The important difference between
indexing proprietary data and public data is that for public data, we only
index document surrogate types of data such as title of web page, key-
word and author name. With regard to indexing proprietary data, input
data is formatted in XML and the pre-defined set of XML elements
from data are parsed and indexed. In searching time, when the user wants
to view the full text of the public data, a link on the results page (Figure
4) takes the user to the site.

5.LESSONLEARNED

In this section, we summarize the lessons we learned in developing
CS-Engine with object oriented technologies. Note that our emphasis of
this section is on lessons we learned in designing and building of a spe-
cific search engine, rather than theoretic proof as an outcome of a
research project with the prototype system for the validation of the
concept.

Displaying duplicate records among the multiple databases: Since
many instances of duplicate records exist across the databases, the dupli-
cate records need to be identified either in search time or indexing time
to properly display duplicate records. If we don’t identify and filter out
the duplicate records, it confuses the user when viewing the results of
their search. In CS-Engine, we decided to filter out the duplicate records
in search time by building a hash table for the duplicate records. With
this approach, updating indexes is simplified and straightforward. The
downside of this approach is that it slows down the search due to the fact
that filtering out the duplicate records is done in real time rather than
off-line.

Third party software dependency: We used a free third party XSLT
library to transform XML to HTML. Some major issues on interface
design were raised due to the bugs of the third party library. Since the
communication channel with the third party company wasn’'t estab-
lished in an efficient manner, it took a while to fix the problems. We
felt that it is critical to establish a solid communication channel with the
third party vendor early in the development phase.

HTTP Protocol: With regard to developing the web crawler pack-
age, we had difficulty in spidering some web sites, where their HTTP
responses returned redirection and cookies messages for the HTTP POST
method. In addition, since major web sites now place the robot.txt (a
simple ASCII document that disallows search engines to spider the sites)
in their web server, it was required to negotiate with the site owners to
spider their sites. And since negotiation takes time, it is recommended
to finish this business negotiation process prior to the development
phase.

Handling special characters in XML entity: Since our XML-for-
matted web database contains data written in English as well as data in
other languages, we had to cope with special characters such as € or &
The XML parser we used abruptly terminated its execution when it
processed those special characters. To work around this problem, we
took an ad hoc approach by replacing those characters in raw data with
corresponding encoded characters. This is a well-known issue with XML
parsers in handling some foreign characters in XML entities. For inter-
nationalization, handling of special characters needs to be addressed in
the XML parser enhancement.

6.CONCLUSION

In this paper, we have presented the design and development of
CS-Engine by using object oriented methodologies. The CS-Engine is
differentiated from other search engines in that it allows the user to
search heterogeneous, multiple databases within a single query transac-
tion. The CS-Engine allows the user to search both public domain web
data and proprietary databases of a company.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

The CS-Engine developed in the spirit of OO enables the user to 1)
query multiple database indexes selected at query time, 2) generate in-
terface screens dynamically with XML and XSL, 3) edit and execute
Boolean/probabilistic queries and 4) filter search results by database
type. Cross-search capabilities provided by CS-Engine alleviate the
users’ inconvenience of switching databases and searching the Internet
to satisfy their information needs.

We are currently conducting an intensive testing of how scalable
and applicable CS-Engine is in the real-world scenario. In the experi-
ments, the test query varies from one term to 50 term query. In addi-
tion, concurrency testing, varying from one user to 200 users, is also
conducted.

The further follow-up study would be to evaluate the efficiency and
effectiveness of the CS-Engine. In order to evaluate usability of the CS-
Engine, the following criteria will be taken into account: 1) measure of
the quality of the software, 2) speed of the system and 3) reusability of
the components. This is a difficult task yet to accomplish.

In addition, we are currently re-architecting the indexing compo-
nent of CS-Engine with UML and design patterns. We aim to compare
the search component and index component in terms of different OO
methods.

FOOTNOTE
1 The research of these authors is supported in part by AFOSR Grant
No. F49620-01-1-0264.

7.REFERENCE

[1] Brin, Sergey and Page, Lawrence, The Anatomy of a Large-
Scale Hypertextual Web Search Engine, 7th International World Wide
Web Conference, Brisbane, Australia 14-18 April 1998, pp. 234-251.

Information Technology and Organizations 603

[2] Croft, Bruce W. What Do People Want from Information
Retrieval? D-Lib Magazine, November 1995, pp. 754-766.

[3] Cutting D. R., J. O. Pederson, and P. Halvorson. An object-
oriented architecture for text retrieval. In Proceedings of RIAO'91,
1991, pp. 440-449.

[4] Fowler, M. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Adison-Wesley 1999.

[5] Hofmeister C, Nord RL, Soni D. Describing software architec-
ture with UML, 1st Working IFIP Conference on Software Architecture
(WICSAL), Feb 22-24, 1999, Software Architecture, 1999, pp. 145-
159.

[6] Lieming Huang, Ulrich Thiel, Matthias Hemmje, Erich J.
Neuhold. Distributed Information Search with Adaptive Meta-Search
Engines. In Proceedings of The 13th Conference on Advanced |nforma-
tion Systems Engineering (CAISE’'01), 2001, pp. 315-329.

[7] Gamma, E., Helm, R., Johnson, R. and Vlissides J. Design Pat-
terns: Elements of Reusable Object-Oriented Software. 1995.

[8] Gibb F, McCartan C, O’'Donnell R, et al. The integration of
information retrieval techniques within a software reuse environment.
Journal of Information Science, 26, 2000, pp. 211-226.

[9] Li JF, Chen J, Chen P, Modeling web application architecture
with UML. 36th International Conference On Technology of Object-
Oriented Languages And Systems, Proceedings, 2000, pp. 32-39.

[10] Spink A, Ozmutlu HC What do people ask for on the Web and
how do they ask it: Ask Jeeves query analysis, Proceedings of American
Society for Information Science and Technology, 38, 2001, pp. 545-
554.

[11] Wade S and Braekevelt, P. IR Framework - An Object-Ori-
ented Framework For Developing Information-Retrieval Systems. Pro-
gram-Automated Libraries, 29, 1995, pp. 15-29.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/engine-development-cross-search-
engine/32086

Related Content

Software Engineering and the Systems Approach: A Conversation with Barry Boehm

Jo Ann Lane, Doncho Petkovand Manuel Mora (2008). International Journal of Information Technologies
and Systems Approach (pp. 99-103).
www.irma-international.org/article/software-engineering-systems-approach/2542

Information Visualization Based on Visual Transmission and Multimedia Data Fusion

Lei Jiang (2023). International Journal of Information Technologies and Systems Approach (pp. 1-14).
www.irma-international.org/article/information-visualization-based-on-visual-transmission-and-multimedia-data-
fusion/320229

The Effects of Sampling Methods on Machine Learning Models for Predicting Long-term Length
of Stay: A Case Study of Rhode Island Hospitals

Son Nguyen, Alicia T. Lamere, Alan Olinskyand John Quinn (2019). International Journal of Rough Sets
and Data Analysis (pp. 32-48).
www.irma-international.org/article/the-effects-of-sampling-methods-on-machine-learning-models-for-predicting-long-
term-length-of-stay/251900

Secure Group Key Sharing Protocols and Cloud System

Vaishali Ravindra Thakareand John Singh K (2018). Encyclopedia of Information Science and Technology,
Fourth Edition (pp. 1667-1675).
www.irma-international.org/chapter/secure-group-key-sharing-protocols-and-cloud-system/183882

Risk Regulation Regimes of Radio Frequency Information Technology

Joshua M. Steinfeld (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 6282-
6294).

www.irma-international.org/chapter/risk-regulation-regimes-of-radio-frequency-information-technology/113084

http://www.igi-global.com/proceeding-paper/engine-development-cross-search-engine/32086
http://www.igi-global.com/proceeding-paper/engine-development-cross-search-engine/32086
http://www.irma-international.org/article/software-engineering-systems-approach/2542
http://www.irma-international.org/article/information-visualization-based-on-visual-transmission-and-multimedia-data-fusion/320229
http://www.irma-international.org/article/information-visualization-based-on-visual-transmission-and-multimedia-data-fusion/320229
http://www.irma-international.org/article/the-effects-of-sampling-methods-on-machine-learning-models-for-predicting-long-term-length-of-stay/251900
http://www.irma-international.org/article/the-effects-of-sampling-methods-on-machine-learning-models-for-predicting-long-term-length-of-stay/251900
http://www.irma-international.org/chapter/secure-group-key-sharing-protocols-and-cloud-system/183882
http://www.irma-international.org/chapter/risk-regulation-regimes-of-radio-frequency-information-technology/113084

