IDEAGROUPPUBLISHING

= 6P =F

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA

ITP4857

Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

Business Process Diagrams: An UML
Extension

Peter Rittgen
TU Darmstadt, Hochschulstr. 1, 64289 Darmstadt, Germany
phone: +49(6151)16-4416, fax: -5162
E-mail: rittgen@bwl.tu-darmstadt.de

ABSTRACT

Although UML offers models that can be used to describe business
processes, many practitioners nevertheless prefer to employ languages
that are specifically designed for this purpose. These business process
languages typically provide only a weak integration with software
modeling languages such as UML. To enhance the support of software
development we therefore suggest to extend UML'’s activity diagrams with
a business process semantics which leads us to Business Process Diagrams
(BPDs). We show how to derive BPDs from the well-known business process
language of Event-driven Process Chains (EPCs). We use Petri nets as a
common formal process meta model for both.

INTRODUCTION

When analyzing a company for potentials of information systems
support, a major task consists in identifying the relevant business pro-
cesses and describing them in a suitable modeling language. Many such
languages have been developed over the years such as IDEF (Integrated
DEFinition, (Bruce, 1992)), Role Activity Diagrams (Ould, 1995) and
ARIS/EPC (ARchitecture of integrated Information Systems / Event-
driven Process Chain, (Scheer, 1999)) to name but a few. They share a
common characteristic in that they are not equipped to support the
design of software. The Unified Modeling Language (UML), cp. e.g.
(Rational Software et al., 1997), on the other hand, does provide the
features pertinent to software engineering but it is less qualified for
domain-oriented models. In practice this leads to a separation of con-
cerns but also to heterogeneous usage of modeling languages: domain
experts using business languages, and software engineers using UML.
This entails an undesirable gap between domain and software models
representing a source of mistakes that are hard to correct.

Hence we suggest Business Process Diagrams (BPDs) — a language
closely related to UML activity diagrams — for both worlds taking a
closer look at a typical business process language called Event-driven
Process Chains (EPCs). Our main objective is to ensure that all features
of EPCs are present in BPDs, too, and at the same time make certain
that the semantics of corresponding EPC and BPD diagrams coincide.
We achieve that by using the formal, i.e. mathematical, process lan-
guage of Petri nets as a common meta model to define the meaning of
both diagram types. That will allow us to conclude that the resulting
language of BPDs is suitable for designing processes not only in the
software but also in the business domain. It also enables an automatic
transformation from EPC to BPD and back, i.e. switching between
business and software view.

In the following sections we first introduce Event-driven Process
Chains as typical models for business processes and we define their
semantics in the light of the common meta model of Petri nets. We
then go on enhancing the suitability of UML activity diagrams for
business modeling which leads us to Business Process Diagrams. Their
semantics is also based on the common meta model which ensures the
compatibility of both EPC and BPD. We conclude by showing examples
of typical business processes and their representation as EPCs and BPDs.

EVENT-DRIVEN PROCESSCHAINS A SPECIFIC
BUSINESSPROCESSLANGUAGE

Event-driven Process Chains were introduced to draw a graphical
representation of a business process. They consist of the following
elements shown in Figure 1.

Since the EPCs were introduced by Scheer there have been many
opinions on how a correct EPC should look like. Proposals ranged from
syntactical issues (which nodes can be linked to each other) to semantics
(what is the exact meaning of a connector?). On the syntactical level
some rules have been established that are now generally accepted, for
example (Keller & Teufel, 1997): An EPC consists of strictly alternat-
ing sequences of events and functions (i.e. processes) that are linked by
logical connectors (AND, OR, XOR). There are opening connectors
(splits) and closing connectors (joins). The AND stands for parallel
threads, the XOR for mutually exclusive alternatives and the OR for
selecting arbitrarily many alternatives. Events are instantaneous hap-
penings which trigger a business function or process. They may also be
the result of the finishing of a function or process. A function is an
elementary business activity, a process is a business activity which is
refined through another EPC. A function/process can have attached to
it the organizational unit responsible for it and data containers from
which it gets input or to which it stores output. Figure 2 gives an ex-
ample of how an EPC looks like.

APETRI-NET MODEL FOR EVENT-DRIVEN PROCESS
CHAINS

The precise meaning of an EPC is largely subject to personal inter-
pretation, especially where unmatched joins and timing are concerned
(Rittgen, 1999). This seeming deficiency is not the result of a bad
language design but rather a requirement for the analysis stage where the
participants typically do not yet have a deep and clear understanding of
the business process. So freedom of interpretation is a pro at this stage

Figure 1: EPC elements
arrived
function/process

. ! '
' ' 1
PONEEONEFON
N XOR N AND PN OR .
' ' !

v v v

logical connectors: splits and joins

organizational unit
input/output container

[\

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Figure 2: Example EPC

order
arrived

refuse
order

deliver

and therefore a precise semantics was left unspecified intentionally by
the proponents of the EPC. But at later stages we do require more
precise models and hence the issue of a formal semantics for EPCs has
been studied quite thoroughly (e.g. (Chen & Scheer, 1994), (Langner et
al., 1997) and (Rump, 1997)). All approaches have in common that
they transform the ambiguous EPC into a Petri net with a unique and
precise meaning. This transformation entails that a number of possible
interpretations are thrown away. Only the “correct” one is represented
in the Petri net. But who is to say which interpretation is correct? This
way we might easily eliminate the one which was intended by the mod-
eler or the one which would have come out as the result of the collective
process driven by the people involved in building an informations sys-
tem: users, domain experts, software engineers, (project) managers etc.

In (Dehnert & Rittgen, 2001) we therefore suggested that the
transformation into a formal language should keep all possible interpre-
tations. As a consequence we arrive at the rules displayed in figure 3.
The left side of each bar shows an EPC element, on the right side you
find the corresponding Petri net element. For a detailed description of
this process we refer the reader to (Dehnert & Rittgen, 2001). On the
basis of these rules and a Petri net semantics for BPDs (enhanced Activ-
ity diagrams) we will be able to translate between EPCs and BPDs and
hence between business and software views on processes.

ACTIVITY DIAGRAMSAND BUSINESSPROCESSES

Although the proponents of UML themselves suggest that activity
diagrams can be used for business process modeling (cf. (OMG, 2000, p.
1-9)) there is some doubt as to whether they actually cover all aspects

Figure 3: Transformation EPC ® Petri net

C

event

o -
place @

C IO

function transition

Information Technology and Organizations 561

required for modeling business processes (cf. (Nittgens et al., 1998).
(Simons & Graham, 1999) point out that activity diagrams are better
suited for this purpose than use cases and other UML diagrams and
(Barros et al., 2000) identify areas of improvement. Among the busi-
ness process features missing in UML 1.3's activity diagrams are:

¢ an event-control mechanism,

¢ handling of errors/ exceptions,

« flexible assignment of organizational units responsible for an activity,
¢ assignment of data containers (here: objects) to activities.

(OMG, 2000, p. 3-146) defines:

An activity diagram is a special case of a state diagram in which
all (or at least most) of the states are action or subactivity states
and in which all (or at least most) of the transitions are triggered
by completion of the actions or subactivities in the source states.
The entire activity diagram is attached (through the model) to a
class, such as a use case, or to a package, or to the implementa-
tion of an operation. The purpose of this diagram is to focus on
flows driven by internal processing (as opposed to external events).
Use activity diagrams in situations where all or most of the
events represent the completion of internally-generated actions
(that is, procedural flow of control). Use ordinary state dia-
grams in situations where asynchronous events occur.

This means that in activity diagrams a transition is typically not
associated with an event because it is triggered by the completion of its
predecessor. Nevertheless it does no harm to allow for this because the
activity diagram is formally a special case of a state chart diagram and
the latter provides event-controlled transitions. We only have to define
what an event-controlled transition leaving an action state means, espe-
cially in the presence of additional, event-less transitions, because that
is not covered by the original definition (see figure 4).

If the event takes place before the activity is finished, the activity
is aborted and state 2 is entered. Otherwise Sl is entered upon termina-
tion of the activity. This mechanism can also be used to handle errors /
exceptions where the error is an event aborting the current activity and
entering a state of error handling / recovery.

To assign organizational units to activities (OMG, 2000) suggests
the use of the so-called swim lanes. A swim lane is a rectangular area
separated by vertical lines from the swim lanes to the right and the left.
Each swim lane represents an organizationa unit. All activities that fall
within the responsibility of this organizational unit are collected within
its swim lane. While this notation is quite useful for smaller diagrams it
becomes more and more tedious as the number of activities increases.
There is a trade-off between the vertical partitioning into organiza-
tional units and the horizontal ordering along the control flow that
often results in a ‘messy’ arrangement of the transitions: activities that
follow each other temporally might be in distant swim lanes and activi-
ties in adjacent swim lanes might be far removed from each other con-
cerning the logic of execution. In such cases the diagram cannot be
arranged clearly.

The first step of solving this problem consists of relaxing the strict
geometric shape of a swim lane from a rectangle to an arbitrary closed
curve (a ‘cloud’). Figure 5 shows how a cloud can be employed to group
the activities for which the sales department is responsible. But even a
cloud cannot group activities satisfactorily that are scattered over a
large area with many unrelated activities in between. In these cases it
makes sense to attach the organizational unit directly to the activity as

Figure 4. Events in activity diagrams

event

do activity

event/abort
activity

activity
completed

enter S1 enter S2

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

562 Information Technology and Organizations

Figure 5: BPD for the EPC of figure 2

order
arrived

check
order

refuse accept
order order

deliver
order

O,

done in EPCs, i.e. in the form of an ellipse with a vertical bar. Such a
notation is also useful when an organizational unit is responsible for
only one activity in the whole BPD as the example in figure 5 shows.
To summarize the argument we suggest to use a mixture of nota-
tions to represent the organizational aspect of a business process, i.e.:
¢ swim lanes as proposed for activity diagrams in (OMG, 2000) (for
small diagrams),
¢ clouds for grouping neighbouring activities (in larger diagrams), and
¢ EPC-style ellipses for scattered or individual activities (in larger dia-
grams).

A similar notation can be used for the assignment of data contain-
ers / objects.

PETRI-NET SEMANTICSOF BUS NESSPROCESS
DIAGRAMS

If we intend to use Business Process Diagrams for both business
processes and the dynamics of software we have to go into the precise
meaning of these diagrams first. Activity diagrams are defined in (OMG,
2000) as a variation of state machines where each state represents the
performance of an activity. It is drawn as a rectangle with rounded
vertical lines. The state contains a do activity and optionally an entry
and/or an exit action. Entry and exit actions are performed on entering
or leaving the state respectively. Their execution is considered to be
instantaneous. The do activity is performed while being in the state. It
can take any amount of time. Upon termination of this activity the
state is left.

Figure 6 shows a generic activity state together with its semantics
in Petri net notation. A Petri net is a bipartite graph of places (circles)
and transitions (squares) where a transition can fire if all incoming
places are occupied by tokens. Upon firing a token is removed from
each incoming place and thereafter one token is put on each outgoing
place. See (Peterson, 1981) for a detailed treatment of Petri nets. In the
Petri net of figure 6 the entry action is performed (on entering the

Figure 6: Activity state (notation and semantics)

entry action
entry/action
do/activity do activity
exit/action

exit action

Figure 7: Guarded branch
(notation and semantics)

[condition A]

activity
completed

neither A
norB

enter S2

enter S1

enter S3

state) and a token put on the place. While the activity is performed the
token remains on the place. Upon its termination (which coincides with
performing the exit action) the token is removed.

If we want to express non-sequential behaviour there are two dif-
ferent ways of splitting the path of execution: branching into alterna-
tive paths and forking into parallel paths. The branch is simply denoted
by more than one arrow leaving a state (see figure 7). A guard should be
specified to determine which path is selected. A guard is a Boolean
condition written in square brackets. If it evaluates to true the corre-
sponding path is chosen. An else guard can be specified which holds if al
other guards are false. It should in fact be present if such a situation can
arise to prevent the process from blocking. Exactly one path is chosen
so the branch corresponds to the exclusive OR (XOR) connector of
EPCs. If more than one guard is true one of the associated paths is
selected arbitrarily. To avoid misinterpretation in this case it is recom-
mended to cascade the decisions in the form of a binary tree as shown in
figure 8.

The notational element for cascading guards is the diamond shape.
It has no semantics of its own and only serves as an anchor point for
splitting a path. The design in figure 8 ensures that condition A is given
preference if both A and B are true.

The second way of splitting up the execution is the fork. It is
denoted by a bar (see figure 9). If it is unguarded it simply refers to the
parallel, independent execution of both paths (called thread 1 and thread
2). In this case it corresponds to the AND connector of EPCs. The join
of the parallel paths is synchronous, i.e. it waits for the completion of
both paths. If a path is guarded and the guard is false it is neither taken
nor waited for. A fork where all paths are guarded corresponds to the
(inclusive) OR connector of EPCs as arbitrarily many paths can be
taken. The rules governing activity diagrams demand that guarded threads
have to be well-nested, i.e. jumps into or out of such a thread are not
allowed except for synchronizing between threads. Please observe that
this restriction is problematic in the case of business process modeling as
it drastically limits the number of valid models. A detailed discussion of
this problem in the context of EPCs can be found in (Rittgen, 2001).

Figure 8: Cascaded branch

[condition A]

(s ===

» S
[condition B]

»{ S2
[else]

»(S3

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Figure 9: Guarded fork (notation and semantics)

[guard]

= - _I = - -I
| Thread 1I |Thread2|

guard

Thread 1
false

Thread 2

OUTLOOK

The introduction of UML provided a standard which not only
influenced the modeling of software but also that of businesses. Many
methods that were so far primarily focused on the business domain are
now being equipped with interfaces to UML. On the other hand early
versions of the UML paid little attention to business applications. The
use case seemed to be the only UML concept for business modeling and
was hence often stretched beyond its original scope, e.g. by employing
it to model business processes. Many authors have therefore tried to
make use of the powerful UML concept of stereotypes to build applica-
tion-oriented languages. Contrary to this development the ideas out-
lined here argue that we need more original support for business-ori-
ented concepts in UML rather than having to specify them as an add-
on. The reason for this is that the latter makes it much more difficult to
establish a standard for the ‘business add-ons’ and to integrate the busi-
ness models into the UML world. We have taken one step in this direc-
tion by adding the concept of business processes to UML. Others should
follow to make UML a truly unified language for al aspects of develop-
ing information systems.

CONCLUSON

Building an information system is a complex, time-consuming and
costly endeavour. Its success depends largely on the amount of under-
standing that can be established between the major players: users, do-
main experts, software engineers, managers etc. Understanding can be
established through models that serve as a basis for the communication
of ideas and designs by supporting the individual view of each group of
players while at the same time making sure that they really talk about
the same model. This requires the views to have a common semantical
basis (or meta model) and to translate into each other. In the area of
business processes, models have been suggested that support a business
view (e.g. EPC) and others that support a software view (e.g. activity
diagrams). But instead of being only different views on one and the same
model they are actually completely different models that cover a simi-
lar area but that do not have a common basis (semantics or meta model).
Hence translating between the views is difficult and the resulting com-
munication between the players is weak and subject to misunderstand-
ings which in turn leads to a poor system design.

We have therefore developed Business Process Diagrams which
inherit the concepts of both EPCs and activity diagrams and put both on
a sound common basis, the Petri net meta model. This facilitates the
translation between the views and thus enables players from different
groups to discuss the same model while retaining their individual views.
In this way differing interpretations or expectations of the system can

Information Technology and Organizations 563

be identified early and can be prevented from evolving into serious
mistakes in the software or disappointment for the users.

REFERENCES

Barros, A., Duddy, K., Lawley, M., Milosevic, Z., Raymond, K., &
Wood, A. (2000). Processes, Roles, and Events: UML Concepts for
Enterprise Architecture. In A. Evans, S. Kent, & B. Selic (Eds.). UML
2000 - The Unified Modeling Language. Advancing the Standard. Third
International Conference, York, UK, October 2000. Proceedings. Lec-
ture Notes in Computer Science 1939, Berlin: Springer, pp. 62-77.

Becker, J., & Schiitte, R. (1996). Handelsinformationssysteme.
Landsberg.

Bruce, T. A. (1992). Designing quality databases with IDEF1X
information models. New York: Dorset House.

Chen, R., & Scheer, A.-W. (1994). Modellierung von Prozessketten
mittels Petri-Netz-Theorie, Report 107, Institute of Information Sys-
tems, University Saarbriicken.

Dehnert, J., & Rittgen, P. (2001). Relaxed Soundness of Business
Processes. In K.R.Dittrich, A. Geppert, & M.C. Norrie (Eds.). Advanced
Information Systems Engineering, 13th International Conference, CAiSE
2001, Interlaken, Switzerland, June 4-8, 2001. Proceedings. Lecture
Notes in Computer Science 2068, Berlin: Springer, pp. 157-170.

Langner, P., Schneider, Ch., & Wehler, J. (1997).
Prozessmodellierung mit Ereignisgesteuerten Prozessketten (EPKs) und
Petri-Netzen, WIRTSCHAFTSINFORMATIK, 39(5), pp. 479-489.

Nuttgens, M.; Feld, T.; Zimmermann, V. (1998). Business Process
Modeling with EPC and UML: Transformation or Integration? In M.
Schader, & A. Korthaus (Eds.). The Unified Modeling Language - Tech-
nical Aspects and Applications. Heidelberg: Springer, pp. 250-261.

OMG (Ed.) (2000). OMG Unified Modeling Language Specifica-
tion: Version 1.3, March 2000. Needham: OMG.

Ould, M. (1995). Business processes. modeling and analysis for re-
engineering and improvement. Chichester: John Wiley and Sons.

Peterson, J. L. (1981). Petri net theory and the modeling of sys-
tems. Englewood Cliffs: Prentice-Hall.

Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling
Software, MCI Systemhouse, Unisys, ICON Computing, IntelliCorp, i-
Logix, IBM, ObjecTime, Platinum Technology, Ptech, Taskon, Reich
Technologies, & Softeam (1997). UML Notation Guide: Version 1.1, 1
September 1997. Available: http://www.rational.com/uml [1999, 04-17].

Rittgen, P. (1999). Modified EPCs and Their Formal Semantics,
Report 19, Institute of Information Systems, University Koblenz-Landau.

Rittgen, P. (2001). E-Commerce Software: From Analysis to De-
sign. In A. Gangopadhyay (Ed.). Managing Business with Electronic
Commerce: Issues and Trends. Hershey: Idea Group, pp. 17-36.

Rosemann, M. (1996). Komplexitatsmanagement in
Prozemodellen: Methodenspezifische Gestaltungsempfehlungen fir die
Informationsmodellierung. Wiesbaden: Gabler.

Rump, F. (1997). Erreichbarkeitsgraphbasierte Analyse
ereignisgesteuerter Prozessketten, Technical Report 04/97, OFFIS In-
stitute, University Oldenburg.

Scheer, A.-W. (1999). ARIS - Business Process Modeling. (2 ed.).
Berlin: Springer.

Simons, A. J. H., & Graham, . (1999). 30 Things that go wrong in
object modelling with UML 1.3. In H. Kilov, B. Rumpe, I. Simmonds
(Eds.). Behavioral Specifications of Businesses and Systems, chapter 17.
Amsterdam: Kluwer Academic Publishers, pp. 237-257.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/business-process-diagrams/32074

Related Content

Social Media and Business Practices

Ashish Kumar Rathoreand P. Vigneswara llavarasan (2018). Encyclopedia of Information Science and
Technology, Fourth Edition (pp. 7126-7139).
www.irma-international.org/chapter/social-media-and-business-practices/184409

Rigor, Relevance and Research Paradigms: A Practitioner's Perspective
John C. Beachboard (2004). The Handbook of Information Systems Research (pp. 117-132).
www.irma-international.org/chapter/rigor-relevance-research-paradigms/30346

Business Innovation and Service Oriented Architecture: An Empirical Investigation

Bendik Bygstad, Tor-Morten Grgnli, Helge Berghand Gheorghita Ghinea (2011). International Journal of
Information Technologies and Systems Approach (pp. 67-78).
www.irma-international.org/article/business-innovation-service-oriented-architecture/51369

Towards Benefiting Both Cloud Users and Service Providers Through Resource Provisioning
Durga S., Mohan S., Dinesh Peter J.and Martina Rebecca Nittala (2019). International Journal of
Information Technologies and Systems Approach (pp. 37-51).

www.irma-international.org/article/towards-benefiting-both-cloud-users-and-service-providers-through-resource-

provisioning/218857

Inhibitors to Internet Use by Sub-Saharan African SMEs

Princely Ifinedo (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 6836-
6845).

www.irma-international.org/chapter/inhibitors-to-internet-use-by-sub-saharan-african-smes/113149

http://www.igi-global.com/proceeding-paper/business-process-diagrams/32074
http://www.irma-international.org/chapter/social-media-and-business-practices/184409
http://www.irma-international.org/chapter/rigor-relevance-research-paradigms/30346
http://www.irma-international.org/article/business-innovation-service-oriented-architecture/51369
http://www.irma-international.org/article/towards-benefiting-both-cloud-users-and-service-providers-through-resource-provisioning/218857
http://www.irma-international.org/article/towards-benefiting-both-cloud-users-and-service-providers-through-resource-provisioning/218857
http://www.irma-international.org/chapter/inhibitors-to-internet-use-by-sub-saharan-african-smes/113149

