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ABSTRACT
End users are helpless with opaque software systems that are complex,
error-prone, and equipped with incorrect and/or misleading
documentation. Our approach is to allow end-users to monitor software
systems; in order to tackle their formidable complexity, systems are built
for on-line monitoring by basing them on an open conceptual model
whose abstraction provides comprehension to the end-user. While
prototyping this approach, we have found that it is not enough to have a
static and dynamic conceptual model: they need to be linked. The
realization of such a link can be very simple and yet very useful.

INTRODUCTION
End-users today are forced to trust software systems that they

have very little control over, are hard to extend, work in unexpected
ways, and do not conform to documented features while leaving impor-
tant features undocumented [16]. As Dijkstra says, “... The average
customer of the computing industry has been served so poorly that he
expects his system to crash all the time, and we witness a massive
worldwide distribution of bug-ridden software for which we should be
deeply ashamed” [9]. Although software has recently become a con-
sumer product world-wide, the customer’s desire for quality has not
translated into software reliability and integrity. Perhaps because of
their awe of the product’s complexity and opaqueness, consumers have
accepted this state of affairs. Interestingly, these circumstances have
co-existed with impressive developments in both formal methods [3,
12, 20] and practical aspects of software development (e.g., the
Cleanroom method [17]). We have analyzed this situation and offered
our approach [16]: build the software system so that it can be monitored
by end-users, the motive being to empower the end-users with insight
into the system.

Software execution can be monitored only if it is understood, and
for us, understood by end-users. But how does one understand software?
The state of a complex software system is typically defined as a snap-
shot of the values of the variables occurring in the code. But such a state
is meaningless to the end-user. Furthermore, one needs a large sequence
of such states to provide a record of an execution instance or a part
thereof.

Conceptual modeling is fundamental to computing [5] because it
lets us cope with the complexities of the real world that all software
systems must interface with. Conceptual models have for long been used
by database designers [1] who not only base their design on it (it is called
it a semantic model and is typically an entity-relationship [6] schema)
but also retain it: a database system keeps around a (derived) schema or
meta-data to be queried at run-time just like ordinary data. Our approach
takes a leaf out of their book by making the conceptual model of a
software system an integral component of the final system. When viewed
in the context of a conceptual model, we believe, the “incomprehen-
sible” state becomes understandable to all. The conceptual model there-
fore, becomes the key to the end-user in understanding the software and
tracking its execution.

To realize our approach, we require three changes. First, the soft-
ware lifecycle has to be modified in order to incorporate a conceptual
model at the requirement analysis, design, and implementation phases
so as to finally allow the model to “live” as a part of the final product
that it captures. If a method such as Cleanroom is followed, then check-
ing the model against the code would be an added responsibility of the
peer-review process. Second, the final system is to be augmented by an
underlying database with query support. Third, during development, probes
are to be inserted in the software so as to capture certain data during
execution and send it to the underlying database. The end user can query
both the conceptual model and the probed run-time data to obtain in-
sight into the system and its actual behavior. Automatic enforcement of
database integrity constraints can provide an alerting mechanism.

We looked for a conceptual modeling language that emphasized
the static and dynamic aspects of the world and was suitable for software
systems. We ruled out approaches such as SASD [8] in which entities of
the real world are not clearly described. We chose UML (Unified Model-
ing Language) [11, 15, 18] for the following reasons. First, while chiefly
used for modeling object-oriented systems, it has been claimed that
UML can be used to specify, visualize, construct, and document all
artifacts of software systems. Second, UML presents a fair amount of
maturity since it represents a convergence of several analysis and design
notations ([2, 19, 14]). Third, UML has proven successful in the mod-
eling of large and complex systems and is becoming the lingua franca for
software design and development; this reduces the learning overhead
involved in following our approach. Fourth, it is independent of specific
programming languages and development processes. Finally, the lack of
formal semantics is not crucial in our case since we are using conceptual
models at the highest levels of abstraction where we interface with the
messy external world. Note that our choice was not influenced by ques-
tions regarding the mode of presentation of the conceptual model to the
end user. We have prototyped our approach by reverse-engineering and
rebuilding four software systems [13], the first two being application
programs while the last two run in kernel mode under Linux.

In this paper, we report our observation about the adequacy of
UML for our needs: while UML does provide the appropriate mecha-
nisms and level of abstraction, there is a need for more than a static and
a dynamic model. We suggest a data structure that can serve as a bridge:
its simplicity belies its utility. The paper is structured as follows. The
next two sections deal with our use of UML for static and dynamic
models. Subsequently, we discuss what we found to be inadequate for our
needs and how we bridged the gap. We then offer concluding remarks.

STATIC MODEL
We want a static model to focus on certain abstract or concrete

entities and their relationships; these entities are to capture the vital
aspects of the problem domain and highest-level constructs of the soft-
ware system. The static model in UML is called the class view and its
diagrammatic form is called the class diagram. The UML static model is
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very similar to the Entity Relationship (ER) model [6] when extended
to include inheritance and generalization / specialization [10]. The en-
tities are “classes” and binary relationships are “associations”. How-
ever, UML can express a variety of special relationships such as aggre-
gation, composition, generalization. The classes reflect concepts that
are meaningful in an application, including real-world concepts and ab-
stract ones. For example, a ticketing system for an airline company has
concepts such as tickets, reservations, system interface, and data stor-
age. Tickets and reservation are real-world concepts easily understood
by end-users and should be included in our static model. Similarly, in a
bank system, a customer object is associated with an account object.
Such associations arise in the real world and grasping them presents no
difficulty to the end-user.

Figure 1 shows the static model of an application called XMLStore
that converts XML data in a file into a relational database table. There
are five classes. XMLDocument represents an XML file object with
attributes filename, owner and permissions. Such an object consists of
Element objects; the line joining the two ends in an open diamond
indicating aggregation, i.e., a part-whole relationship. A similar aggre-
gation between Element and itself signifies the possibility of arbitrary
nesting of elements. Each element itself may contain zero or more
objects called Attribute. A Node object represents the commonality
between an element and an attribute (a triangle signifies a superclass), an
example of generalization. Its attributes are id (its identifier), level (of
the node in the XML tree), and name (of the element or attribute
forming the node). These attributes are inherited by both subclasses. A
Database object is specified by attributes URL (address of the database
on a network), a JDBC (JDBC driver name specifying the kind of target
DBMS), table (table name), and a status of that database. A sixth class
StoredIn is special: it is an association class denoting the association
between Node and Database reflecting the storage of nodes, i.e., at-
tributes and elements in a database. The association class allows the
association to have attributes; in this case, the date/time of storage and
the user responsible.

Perspective
It has been suggested that UML class diagrams be associated with

one of three perspectives [11]. In the conceptual perspective (essential
perspective in [7]), classes capture concepts in the problem domain and
associations represent relationships between such concepts. The speci-
fication perspective deals with interfaces of the software; classes are at

the interface or type level and associations represent responsibilities.
The implementation perspective is the one exhibited in most common
UML applications: it deals with classes as they exist in an object ori-
ented programming language and associations are pointers. Clearly, our
use of the class diagram can be described as the first: the conceptual
perspective.

Since UML is often used in program development, and many of the
conceptual classes can also be implementation classes, how can one be
sure that we have the right perspective? First, the classes of design
concepts, such as classes dealing with the Graphical User Interface (GUI),
should be absent. Second, UML classes also include operations on ob-
jects of the class, but most of these operations are decided in the design
phase and are design related. For example, though ticket  may be a valid
class in the implementation phase with a method called print, this method
may not reflect any facility available to the end user. Thus we prefer to
eliminate operations from the class. Third, some attributes added to the
class during the design phase should not be available to the end user. For
example, a persistent object identifier (oid) attribute designed to iden-
tify an object in the class may be used only in internal operations hidden
from the end-user.

DYNAMIC MODEL
A dynamic model captures the dynamic behavior of the system.

We need a dynamic model that focuses on the overall behavior of a
system at a level appropriate for end-users. Our requirements are:

Readability: the level of abstraction should be appropriate for
the end-user.

Monitorability: we should be able to match constructs with pro-
gram fragments.

Ability to discern system behavior: it should provide insight
into the dynamic behavior of the system.

For this purpose, we considered four schemes in UML: the Use
Case View, the Interaction View, the State Machine View, and the Activ-
ity View. For shortage of space, we omit the details of this exercise [13]
and simply observe that only the Activity View satisfied each of the
three criteria, and therefore we selected it to serve as our Dynamic
Model.

In general, the dynamic behavior of the system would be described
by several activity diagrams, each of which we call a flow; a flow de-
scribes the realization of a certain functionality. Figure 2 shows the
dynamic model for XMLStore (one flow may be enough for simple
applications). The numbers next to the activity states in the figure are
used only for identification. In state 2, a connection is established with
a database. Then, the existence of the target tablename is checked; if it
exists, it is emptied, else it is created, and then the XML file is opened.
The four-way branch (the branch conditions are given within parenthe-
ses) is a response to each of four possible events caught by the SAX
(Simple API for XML) parser employed: start-element found, end-ele-
ment found, character data found, and end of document reached. At-
tributes found with a start-element are stored in a loop. In states 10
(store attribute) and 13 (end element), values read are written into a row
of the table in the database.

Perspective
The activity diagram can not only describe the dynamic behavior

of the system at a very high level, such as a workflow in an information
system, but also at a lower level, such as a procedure implemented in a
programming language. As with the static model, we have found it useful
to associate a perspective capturing a level of detail with activity dia-
grams: workflow perspective, functional perspective, and algorithmic
perspective. The workflow perspective describes how multiple high-
level tasks cooperate to achieve a system goal. The functional perspec-
tive elaborates on one of those tasks by describing a sequence of func-
tional units. The algorithmic perspective explains how one of those
functional units will be implemented step by step, and it can be mapped
directly to the implementation in code. Among these three perspec-
tives, the workflow perspective diagram is closest to the requirement

Figure 1: Static Model for XMLStore
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analysis, and the algorithmic perspective diagram is closest to the imple-
mentation phase of software development. Generally, an end-user will
be more interested in the details of the module he/she is using rather
than a big picture of the tasks of the whole system. Also, the end-user
may not understand many algorithmic perspective implementation de-
tails of the module. Thus, it would be appropriate to focus on the func-
tional perspective activity diagram.

PROBING THE SYSTEM
In order to embed probes in the software system and allow end users

to monitor the execution, two questions have to be answered:
1. what should probes track, and
2. where (in the source code) to probe.

Our answers are
1. every entity (class), relationship (association), and attribute in the

static conceptual model needs to be tracked because they are legiti-
mate targets of the end user’s queries, and

2. a probe must correspond to a step in the dynamic model.

In other words, the probes should monitor the sequence of activi-
ties described in the dynamic model and report how each such activity
affects elements of the static model.

In order to express for each activity of the Dynamic Model ex-
actly which elements of the Static Model are being used, the dynamic
model needs to refer to the static model explicitly. But while the static
model represents the conceptual objects in a system and a dynamic
model describes the activities of the system and both describe the same
system, it is not easy to discern the relationship between them, i.e.,
which objects of the static model are involved in an activity state or
how attributes of objects affect the result of an activity. The activity
view does not link actions with objects. The UML suggests swimlanes
and object flow to overcome this disadvantage. Swimlanes are used to
organize responsibility for actions according to class. They often corre-
spond to organization in a business model. However, the swimlane does
not describe what will happen to the object during the action. The object
flow shows the flow of the objects, which are passed through the activi-
ties as the inputs and outputs. Generally, the object flow depicts the
state-changing of an essential object during the workflow perspective
activity diagram, but ignores the execution environment and the change
in other objects. Similar inadequacies exist in the other dynamic views
of UML. In summary, we found a need to link the static and dynamic
models explicitly. We did so by adding a table called the Activity Access
Table (AAT).

The Activity Access Table
In an activity state, some objects are accessed in a particular envi-

ronment with a possible resultant change in their attributes. We define
the activity access attributes to be all class attributes (from the static
model) that are accessed in the given activity state (in the dynamic
model). Activity access attributes provide the link between the static
and dynamic models.

We associate with each activity access attribute one of two access
types:
• Dirty: the value of the attribute is potentially changed during the

activity.
• Read-only: the attribute is accessed but without any change in value.

We tabulate the above using an Activity Attribute Table (AAT).
The AAT contains four columns: activity state, accessed class, accessed
attribute, and access type. The first corresponds to an activity state in
an activity diagram. The second and third together pinpoint the at-
tribute of a class in the static model (the exact instance of the object can
be handled by the underlying database and its query facility). Of course,
an activity state can influence several attributes of several objects. The
last column specifies one of the two access types: D stands for a dirty
attribute, and R stands for read-only.

Table 1 shows a fragment of the AAT for the XMLStore applica-
tion. In the activity state connect database, values of attributes URL,
JDBC of class Database are read (i.e., these are read-only attributes)

Figure 2: Dynamic Model for XMLStore

Table 1: AAT of XMLStore

Activity State Class Attribute Type 

URL R 

JDBC R 

connect database Database 

status D 

table R reset table Database 

status D 

table R create table Database 

status D 

open XML file XMLDocument filename R 

… … … … 
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while attribute status of the same class is updated (i.e., this is a dirty
attribute).

Construction of the AAT can be semi-automated. When the de-
signer specifies for each attribute of the static model a corresponding
program object (which could be a variable or a component of a record,
or a function), it is possible to analyze the code to find direct/indirect
references to them. However, finding all such references can be com-
plex in certain programming languages; hence, it cannot always be com-
pletely automated.

By itself, the table is not novel as a data structure. It falls in the
genre of CRUD matrices; such a matrix basically associates one or more
of C (Create), R (Read), U (Update), and D (Delete) with a data-process
pair. In Object-Oriented modeling, such matrices have been shown to be
useful at the specification and implementation perspectives by pairing,
for example, a class with a Use Case [4].

 On the other hand, in our approach, which is based on a concep-
tual perspective, such a structure is crucial and serves more interesting
purposes: the table
• specifies the task of probing (which augments the original software

system) by associating what needs to be probed with where;
• can be used to automate the process of insertion of the probes;
• itself can be queried to find a sequence of activity states (including

instances of the same state such as in a loop) that affect one or more
given attributes; this helps explain to the end user the reason for
system behavior; and

• helps check integrity constraints defined on the static model by iden-
tifying at which activity states, the involved data attributes appear as
dirty attributes.

CONCLUSION
We have explained our desire to facilitate on-line monitoring: such

monitoring is geared to empower end-users with insight into software
they execute. The key component is a conceptual model that remains
an integral part of the final implementation providing abstraction and
comprehension about the system state and its dynamic evolution. We
have prototyped our approach on two application programs and two
device drivers. In this paper, we have reported on our experience with
UML in expressing our conceptual model requirements. We were com-
pelled to add a structure to make the dynamic model refer to the static
model explicitly. The structure is simple but it is both crucial and has
interesting uses. This suggests that augmenting UML with an explicit
link between the static and dynamic models could be very useful.
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