IDEAGROUPPUBLISHING

= 1GP =F

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA

ITP4720

Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

Integrating Artificial Intelligence and
Software Engineering: An Effective
|nteractive Al Resource...
...doesmorethan teach Al

Stephanie E. August
Electrical Engineering and Computer Science Department
Loyola Marymount University
One LMU Drive MS 8145
Los Angeles, CA 90045-2659, USA
saugust@I mu.edu

ABSTRACT

When teaching artificial intelligence (Al) courses, instructors may feel
that our undergraduate programs are successful when the students have
demonstrated understanding of their coursework—often by developing
much of the project code from scratch. This submission contends that this
is not sufficient and that we can (and should) instill sound software
engineering development practices as well. Such an approach can enable
students to build upon the prior work of others and create software upon
which others can build. An approach to develop an effective interactive
Al resource, which would facilitate learning in Al as well as engender
sound software engineering practices is discussed.

INTRODUCTION

An effective undergraduate program in computer science must bal-
ance theory and practice, while reinforcing within each course the les-
sons learned in other courses. An effective resource that is developed to
teach search techniques, for example, would not only walk students
through both uninformed and informed search techniques, but would
also promote software engineering standards and development method-
ology by presenting the design of a software module before presenting
code and by adhering to established coding standards with regard to both
coding style and documentation of code within all code modules. It
would support courses in algorithms by including components that guide
students in analyzing the complexity analysis of the algorithms being
presented. In addition, the resource should make available reusable code
modules that can be incorporated into larger applications, thereby mak-
ing students aware of the importance of defining and managing compo-
nent interfaces and supporting projects that can build upon previous
efforts, rather than always starting from scratch.

One of the interesting features of our undergraduate program at
Loyola Marymount University is a two semester senior sequence in
software engineering. During the first semester of senior year, the
computer science students design and implement a large group project,
following standard software engineering methodology. During the sec-
ond semester, students complete a smaller individual project following
the same methodology. Often, to create an interesting project or make
their applications behave “intelligently”, the students need to fill in
gaps in their knowledge of artificial intelligence, and, in amost all cases,
they code everything from scratch. As a result, we see the same types
of projects with the same levels of implementation each semester. We
decided to improve this situation by creating an interactive, reusable Al
resource facility. Toward this end, we are in the process of developing an

on-line Library of Artificia Intelligence (Al) Resources that facilitates
the reuse of Al algorithms and applications in undergraduate projects.
The objective of LAIR is to provide a set of modules that can be used to
teach concepts in an undergraduate introductory Al course. Good soft-
ware engineering practices will be instilled in students by carefully de-
signing and documenting the modules, which will subsequently be used as
building blocks to improve the performance of and provide additional
functionality in software projects assigned in both Al and non-Al courses.

This paper briefly discusses some of the challenges inherent in
teaching Al and computer science in general and outlines our approach
to meeting these challenges. We conclude with a review of related work,
an outline of our evaluation methodology, and a report on our accom-
plishments to date.

THECHALLENGES

One of the challenges of designing programming assignments for
an Al course is to balance the benefits of understanding the intricacies of
complex algorithms against the benefits of being exposed to a variety of
algorithms and applications (Wyatt, 2000) (Kumar, 2001). LAIR pro-
poses to address this issue by presenting concepts as a set of interactive
exercises. Because less course time will need to be devoted to the imple-
mentation of algorithms, more time will be available to cover artificial
intelligence concepts and applications. Students will have more oppor-
tunity to explore a wider range of topics than would be possible if a large
portion of the course were devoted to the complex programming tech-
nigues needed to implement these algorithms. We expect that this
broad base of experience will put students in a better position to take on
large Al projects in graduate courses, where the students do have a need
to explore topics in depth.

A challenge to every computer science course is to instill good
software engineering (SE) practices in students (Pour, 2000) (Lethbridge,
2000). LAIR will reinforce concepts taught in SE courses by construct-
ing exercises and their solutions using the format for software develop-
ment that is employed in our software engineering courses, and by ad-
hering to established coding standards in all software included in the
project. Coded solutions to the exercises will be available to students to
enhance the functionality and performance of class projects developed
for other courses, promoting the concept of open-system architectures.
In our program, our experience has shown that such a resource would be
useful for projects in Al, SE, and database management systems courses.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

18 Information Technology and Organizations

A challenge to the field of computer science in general is to attract
and retain women. Women often do not fit the stereotype of code-
writing- and implementation-detail-oriented software designer (“hacker”)
to whom courses are often geared, and tend to regard a computer more
as a tool for solving problems than as a “toy”. (Frenkel, 1990) suggests
that women are more likely to remain in the field when courses are
geared less toward code writing and more toward code reading and devel-
oping mental models of the processing involved. In addition, structured
labs with exercises that can be completed before leaving class build the
students’ sense of accomplishment and confidence. LAIR’s emphasis
on structured design, exemplars, and structured exercises addresses this
problem.

Our university is a teaching institution, and places a high value on
integrating material from one course with material presented in an-
other, both within and across disciplines. LAIR supports this tradition
by encouraging collaboration among computer science courses. The
lessons, while geared toward Al, will view concepts from many perspec-
tives. For example, analysis of the complexity of the algorithms in-
cluded in the resource will reinforce lessons related to computer science
theory, and exercises related to data storage will be used to teach data
structure concepts in an undergraduate database management (DBMS)
course.

LAIR will make it easier for the students in both the Al and the
software engineering courses to build onto existing applications. The
resulting projects can subsequently be developed into additional reposi-
tory components and made available for future development. Over a
period of time, this will allow us to add more advanced topics to the
electives available to students. In addition, it will provide a basis for
graduate student study and more comprehensive projects than would be
possible otherwise.

APPROACH

We have identified nine components that are essential to achiev-
ing our goal of creating an effective interactive Al resource. Our choice
of components is patterned after standard software development meth-
odology and the components used in the programming exercises that
accompany (Winston, 1992). The components include:

The Idea. This is a brief explanation of the concept to be presented,
similar in content to a project proposal and requirements analysis. It
will explain what the program segment is expected to do, without
describing how to implement it. This component will also contain
references to additional sources of information on the topic.

Sample Input/Process/Output. An annotated trace of the program in
execution, showing system input and describing the processing taking
place will give the student a clear idea of how the algorithm behaves.
This component corresponds to a concept of operations and user
manual for the implemented concept.

Implementation-independent Design Description. This design de-
scription will give the student an idea of how the concept can be
implemented from a functional perspective. It will include both tex-
tual descriptions and interactive diagrams, such as a unified modeling
language (UML) description that allow the user to explore the design
in a top-down manner, revealing as much design as the developer
chooses to expose and enabling the student to see specific examples of
design patterns that might be relevant to their problem. This descrip-
tion will remain programming language-independent not only for clar-
ity, but for platform portability and longevity as well. The program-
ming languages, platforms, and operating system versions we use to
implement our algorithms change much more rapidly than the ideas
we are implementing! The design description will identify areas in the
design that reflect significant trade-offs or design variations so that
students can better understand a component’s behavior characteris-
tics. In our resource environment, we are exploring ways to facilitate
the means to notate this. Our approach is similar to capturing varia-
tion points that are part of product-line architecture development
(Kerner, 2000) (Northrop, 1999), but is novel in its application to Al
problem domains. One approach we plan to investigate is exploring
design variation descriptions by defining architectural aspects that can

be searched later. We hope to exploit special tags in UML to define
these aspects.

Implementation-specific “HINT” files. Each of these files will con-
tain part of the code needed to implement the concept in a particular
programming language, as well as HINTs that guide the developer in
implementing the remainder of the code. These HINT files are simi-
lar to those used with a great deal of success in courses offered by
information technology training companies. We will also provide pro-
cedures for compiling and running the student’s implementation of
the code. The file will include file header comment blocks and follow
an established coding style. This will reinforce the notion that coding
standards do exist and should be adhered to whenever code is gener-
ated. For aspect-oriented components, we are currently looking into
ways that HINTs can be defined and managed as aspectst. We plan to
conduct experiments on how effectively we can exploit aspects in
retargetting different Al designs for different student projects. An
additional feature, which is beyond the scope of this project but which
would be particularly useful to implement, would be a preprocessor or
code evaluator that compares the code that the student generates in
response to the HINTSs to the code that is needed to implement the
missing pieces.

Test Suite and Driver. Students need to be reminded that a program is
not complete until it has been successfully tested. We will provide an
implementation language-dependent test driver with trial input and
expected output to verify that the code has been correctly imple-
mented. The student can then compare the expected results with the
results generated by their code. Procedures for running the test will be
included for each driver.

Experiments. The experiments will suggest ideas for enhancements and
extensions to the basic code provided, and go beyond the testing
outlined for the test driver above. Interactive demonstrations of the
concept will be available to allow the student to experiment with
various forms of input. The HINT files, implementation-specific test
drivers and implementation-specific experiment drivers will be re-
peated for each source code implementation provided (described be-
low). For example, there might be an aspect-oriented Java version, a
C++ version, and a Common Lisp version of an implemented concept.

Applications. Descriptions of real world applications that use this con-
cept answer the question “Why do we need to learn this? Where will
we ever use this?” Related references and animated, graphical repre-
sentations of algorithms, such as a soccer-playing robot demonstrat-
ing autonomous software agent architecture, will put the concept in
perspective, and provide to the interested student additional avenues
to explore on the topic.

Complexity analysis. This complements the work done in an algo-
rithms class, and should point out the different ways that complexity
can be measured for a particular problem and explore the respective
tradeoffs.

Sour ce Code. Solutions to the exercises in HINT files will be available
for students to check their work, conduct experiments, and use as off-
the-shelf building blocks. The test suites and drivers can be used with
these solutions to perform black box testing of the code. Links to
other implementations as well as more comprehensive implementa-
tions can also be provided.

User Interface Offering Multiple Per spectives

In order for the resource to be useful to a broad spectrum of users,
we plan to provide multiple interfaces for the users. A student in an
introductory programming course might simply need to know how to
interface with a piece of code to a complete simple project, while a
student in an introductory course in artificial intelligence might need a
more detailed web-based tutorial view of the resource, and a knowledge-
able student in a project class who wants to build upon existing code
modules would need to access all available source code in archive format
that is easily downloaded without first wandering through the related
lessons. Our approach is to store the components (lessons, hint files,
documentation, source code) in a database, and use web pages to draw the
needed information from the database as needed. The overhead of the

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

database should pay off in ease of maintaining content and multiple
accesses levels, and will enable us to maintain the presentation logic
independent of the data itself. Since design artifacts such as UML,
aspect-oriented architectural tags, HINT descriptors, and documenta-
tion notes can be managed via XML, we are looking into developing
XML schemas that can integrate our nine component elements. XML
provides a powerful way to exchange information between the various
supporting applications we are designing for the resource environment
and eventually other institutions.

RELATEDWORK

Interactive websites can be invaluable in bridging the gap between
textbooks and applications. Textbooks provide useful information, yet
they are limited in their ability to convey concepts that are subtle,
inherently dynamic, and often complex, which characterizes many ideas
in Al. There is a growing interest in the Al community to develop
effective, interactive, Al resources (Effective, 2001). A website that
showcases these efforts can be found at http://mainline.brynmawr.edu/
EIAIR/. LAIR is being developed in conjunction with this effort, yet is
unique in its emphasis on software engineering and standards and the
explicit inclusion of a design component with each concept included in
the resource.

One of the limitations of existing Al code repositories such as the
Carnegie Melon University site http://www.cs.cmu.edu/afs/cs.cmu.edu/
project/ai-repository/ai/areas/0.html, the American Association of Ar-
tificial Intelligence website http://www.aaai.org/Pathfinder/
pathfinder.html, and those associated with Al textbooks such as (Russell
and Norvig, 1995) and (Winston, 1992), is that the code is rarely ac-
companied by design descriptions, rarely includes detailed structured
exercises to help students implement the concepts, and does not follow
a consistent documentation standard. LAIR will make a valuable contri-
bution in that regard.

There is an increasing need within the computer science commu-
nity to instill in students an appreciation for standard software engi-
neering methodology, and to narrow the gap between vision, education,
and standard practice in the software development community (Pour,
2000) (Lethbridge, 2000). This is not an issue in the defense industry,
when clear guidelines for software developments are available and stan-
dards are strictly enforced. However, it is becoming an increasingly
important issue in the “dot com” era when a significant amount of code
is being developed without explicit requirements for standard software
engineering practices to be followed. As a result, systems that are being
developed that are poorly designed, undocumented, and difficult to main-
tain.

Evaluation M ethodology

Our objectives are twofold: to provide resources to those who wish
to augment their projects with Al algorithms, and to improve our stu-
dents' grasp of fundamental Al algorithms and their use. We anticipate
that the algorithms will be more widely used by students in our project-
based classes and that the students in the Al classes will gain a deeper
understanding of the algorithms and their relative merits through the
availability of the resource. The effectiveness of LAIR in meeting
these objectives will be measured using both quantitative and qualitative
methods. Students in the undergraduate and graduate Al courses will be
tested in class on their knowledge of the algorithms at the end of each
term, with the results compiled and compared over the next four years.
In addition, we will introduce LAIR to students in our group and indi-
vidual software engineering projects at the beginning of each term, and
conduct roundtable discussions of its usefulness at the end of each term
in these classes. These discussions will explore the extent to which the
students were able to incorporate the algorithms into their projects, the
impact of the resource in terms of both design and implementation, and
how we can make the resource more useful in the future. We will use the
feedback from these discussions to modify the user interface to and
content of LAIR to improve its utility over the life of the project. In

Information Technology and Organizations 19

addition, students in the software engineering courses will be required to
include a written summary of their experience with LAIR in their final
project reports and describe in detail which LAIR components contrib-
uted to the success of their projects. These reports will be summarized
and used to track the utilization of the resource beyond the Al class
itself. The ultimate test is whether the materials are useful to students
in interdisciplinary courses, such as the multimedia project class and the
new media workshop, and whether the effort results in well-designed
projects that can in turn be built upon in subsequent years.

Current status

Last year we completed a proof-of-concept project that developed
a framework for the repository of reusable Al code modules. This year
we plan to implement the database and prototype web interface for
LAIR, and continue to develop our content. The resource will store the
exercise components in a relational database to facilitate the mainte-
nance and security of the components. A web-based interface to the
components will offer users easy, yet controlled access to the compo-
nents, an environment for completing the exercises, and links to related
resources on the Internet. The production version of the repository
will be hosted on a set of four servers. Access to the repository will be
available over the web. We estimate that it will require six months to
complete the component for each topic. Given sufficient staffing, we
expect to complete two to four topics each year over the next three
years. Our first focus will be on search algorithms, then on neural
networks, conceptual clustering, and genetic algorithms. Follow on
work will include creating both natural language processing and knowl-
edge representation tutorials that can be used in the Al course to intro-
duce these topics and enhance other projects. Incorporating aspect-
oriented approaches in new domains is still a promising area of research
(Walker, 2002). Applying these approaches to support our Al resource
environment is a new trend in which automated management of highly
complex algorithms, designs, and other architectural information can
be leveraged to improve not only the Al education but also the software
development experience of our students.

REFERENCES

Communications of ACM. October 2001.

“Effective interactive artificial intelligence resources workshop
program working notes.” Russell Greiner, Chair. Seventeenth Inter-
national Joint Conference on Artificial Intelligence, Seattle, 2001.

Frenkel, Karen A. (November 1990) “Women & Computing.”
Communications of the Association for Computing Machinery,
33(11), p. 34-46.

Kerner, Judy. (February 23-25, 2000) “Architectural Evaluation
for Product Lines,” Proceedings of the Ground Systems Architec-
ture Workshop 2000.

Northrop, Linda. (March 3-5, 1999) “Developments in Product
Lines and Architecture Evaluation,” Proceedings of the Ground Sys-
tems Architecture Workshop 1999.

Kumar, Deepak. (January 2001) “How much programming? What
kind?" Curriculum Descant, ACM Intelligence, 12(1), .

Lethbridge, Timothy C. (May 2000) “What Knowledge is Impor-
tant to a Software Professional?” Computer, p. 44-50.

Pour, Gilda; Griss, Martin L.; and Lutz, Michael. (May 2000) “The
Push to Make Software Engineering Respectable.” Computer, p. 35-
43.

Russell, Stuart J., and Norvig, Peter. (1995) Artificial Intelli-
gence: A Modern Approach. Prentice-Hall, Englewood Cliffs, NJ.

Walker, Mark G., and August, Stephanie E. (2002) “Applications
of Aspect-Oriented Software Development Techniques to Spacecraft
Ground System Software.” Submitted for publication.

Winston, Patrick Henry. (1992) Artificial Intelligence. 3 edi-
tion. Addison-Wesley, Reading MA.

Wyatt, Richard. (2000) “Interdisciplinary Al.” Curriculum Des-
cant, ACM Intelligence, 1(2), Spring.

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/integrating-artificial-intelligence-

software-engineering/31937

Related Content

Serious Games in Entrepreneurship Education

Fernando Almeidaand Jorge Sim&es (2018). Encyclopedia of Information Science and Technology, Fourth
Edition (pp. 800-808).

www.irma-international.org/chapter/serious-games-in-entrepreneurship-education/183792

Comparative WebGIS Software Study: How to Support Users Decisions on the Best Solution to
Their Organizations

Sandra Venturaand Alcina Prata (2021). Handbook of Research on Multidisciplinary Approaches to
Entrepreneurship, Innovation, and ICTs (pp. 286-305).
www.irma-international.org/chapter/comparative-webgis-software-study/260562

The Influence of the Application of Agile Practices in Software Quality Based on ISO/IEC 25010
Standard

Gloria Arcos-Medinaand David Mauricio (2020). International Journal of Information Technologies and
Systems Approach (pp. 27-53).
www.irma-international.org/article/the-influence-of-the-application-of-agile-practices-in-software-quality-based-on-isoiec-

25010-standard/252827

POl Recommendation Model Using Multi-Head Attention in Location-Based Social Network Big
Data

Xiaogiang Liu (2023). International Journal of Information Technologies and Systems Approach (pp. 1-16).
www.irma-international.org/article/poi-recommendation-model-using-multi-head-attention-in-location-based-social-
network-big-data/318142

Digitalization of Higher Degree Research (HRD) and Its Benefit to Postgraduate Researchers
Joseph Stokes, Rachel Keegan, Mark Brownand E. Alana James (2019). Enhancing the Role of ICT in
Doctoral Research Processes (pp. 133-152).
www.irma-international.org/chapter/digitalization-of-higher-degree-research-hrd-and-its-benefit-to-postgraduate-
researchers/219936

http://www.igi-global.com/proceeding-paper/integrating-artificial-intelligence-software-engineering/31937
http://www.igi-global.com/proceeding-paper/integrating-artificial-intelligence-software-engineering/31937
http://www.irma-international.org/chapter/serious-games-in-entrepreneurship-education/183792
http://www.irma-international.org/chapter/comparative-webgis-software-study/260562
http://www.irma-international.org/article/the-influence-of-the-application-of-agile-practices-in-software-quality-based-on-isoiec-25010-standard/252827
http://www.irma-international.org/article/the-influence-of-the-application-of-agile-practices-in-software-quality-based-on-isoiec-25010-standard/252827
http://www.irma-international.org/article/poi-recommendation-model-using-multi-head-attention-in-location-based-social-network-big-data/318142
http://www.irma-international.org/article/poi-recommendation-model-using-multi-head-attention-in-location-based-social-network-big-data/318142
http://www.irma-international.org/chapter/digitalization-of-higher-degree-research-hrd-and-its-benefit-to-postgraduate-researchers/219936
http://www.irma-international.org/chapter/digitalization-of-higher-degree-research-hrd-and-its-benefit-to-postgraduate-researchers/219936

