
Issues and Trends of IT Management in Contemporary Organizations 803

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ABSTRACT
Neural networks have been repeatedly shown to outperform traditional statistical modeling techniques for both discriminant analysis and
forecasting.  While questions regarding the effects of architecture, input variable selection, learning algorithm, and size of training sets
on the neural network model�s performance have been addressed, little attention has been focused on distribution effects of training and
out-of-sample populations on neural network performance.  This article examines the effect of changing the population distribution
within training sets, in particular for a credit risk assessment problem.
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INTRODUCTION
As information availability continues to grow (e.g., through the

World-Wide-Web), the complexity of business decision making in-
creases proportionally (Walczak 2001b).  Decision support systems,
data mining tools, and artificial intelligence programs attempt to fa-
cilitate business decision making.  Neural networks, a nonparametric
modeling technique, have been shown to work well for many types of
business problems (Li 1994, Patuwo et al. 1993, Widrow et al. 1994,
Zahedi 1996).  Many researchers have demonstrated empirically that
neural network models outperform the more traditional statistical
models including regression, logit, decision trees, and discriminant analy-
sis (Bansal et al. 1993, Patuwo et al. 1993, Piramuthu 1994).

What factors enable the nonparametric neural network models
to outperform the traditional parametric statistical methods?  All
parametric statistical methods, including regression and Bayesian clas-
sification, necessitate that the population distribution or variable dis-
tributions adhere to pre-defined characteristics such as a multivariate
normal distribution (Klecka 1980).  When variable distributions are
unknown as frequently happens in business problem solving (e.g., bank-
ruptcy prediction and investment risk analysis), then the more tradi-
tional methods, including Bayesian classification, cannot be applied accu-
rately (Patuwo et al. 1993).  Nonparametric approaches, such as neural
networks, are needed to determine group conditional distribution func-
tions when a priori distributions are unknown (McLachlan 1992).

An unanswered question in the field of neural networks is the
effect of unequal population distributions and their maintenance as a
representative sample or alteration as a stratified sample in the train-
ing group used to build the neural network classification model.  A
heuristic that is normally followed by neural network researchers is to
include the greatest amount of data possible in the training samples
(Hu et al. 1999, Patuwo et al. 1993, Smith 1993, Zahedi 1996), which
necessarily forces a representative training sample that maintains dis-
tribution differences.

Another potential problem with the use of stratified training sets
is that the effect of unequal distributions is greatest when the overall
population has very few elements (e.g., a 90/10 distribution between
two categories over 100 samples leaves only 10 samples of the smaller
category to be divided across the training and test sets) and in practice
many interesting business problems have limited data sets (Smith 1993).
Berardi and Zhang (1999) specifically state that small group classifica-
tion with neural networks is particularly sensitive to sampling varia-
tions.  Although recent evidence suggests that neural network training
may be optimized with very small data sets (Walczak 2001a), most
researchers feel more confident if larger training sets can be instanti-

ated.  A common method for maximizing the size of the training set
when small real-world data populations exist is to utilize either
bootstrapping or jackknifing (Efron 1982). The jackknife process,
which is a specialization of the bootstrap method, creates N different
training sets of size N-1, with each data sample being used as the
holdout test sample a single time.  The aggregation of the N test results
effectively approximates the results of an overall model (Efron 1982).
Unfortunately, the use of the bootstrap or jackknife methodologies
necessarily creates a representative training sample that closely emu-
lates the data distribution inequalities found in the population.

This article examines the effect of using stratified training samples
when data samples have an unequal distribution for a two-group classifica-
tion problem in the domain of credit scoring for bank loans.  A modified
bootstrap process is created to maintain predefined distributions within
the training sets.  The results empirically indicate that equal distributions
of each category within the training set produces the optimal generaliza-
tion capabilities of neural network classification models, while represen-
tative training samples (especially when group membership probabilities
are widely disparate) will produce sub-optimal results.

BACKGROUND ON NEURAL NETWORK
BUSINESS CLASSIFICATION MODELS

As previously stated, neural networks are widely used for solving
business classification problems.  Two of the more common applications
of neural network classification models in the financial domain (Zahedi
1996) are for bankruptcy prediction (Fletcher & Goss 1993, Raghupathi
1996, Sharda & Wilson 1996, Wilson & Sharda 1994) and credit/loan
appraisal (Piramuthu et al 1994, West 2000).  West (2000) indicates that
a lender using a neural network credit scoring system was able to achieve
a 10 percent improvement in accuracy over their previous system.

Some of the interesting aspects of previous research are that
three of the five cited studies use a population of paired samples with
representative training sets, so that the failed and non-failed groups or
default and full repayment groups have equal probability of occur-
rence.  Fletcher and Goss (1993) use a sample size of 36 firms and rely
on an N-fold cross validation to handle the small amount of data,
which in practice is the same as a bootstrap.  Small data sets are a
common problem in developing business classification models.
Piramuthu et al. (1994) use two different data sets, each with equal
probabilities of membership, that have 36 and 100 samples respec-
tively for loan default classification (two groups) and credit risk clas-
sification (five groups) and a 10-fold cross validation (bootstrap) is
used to overcome the small sample sizes.
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Wilson and Sharda (1994) performed some early experiments in
the domain of bankruptcy classification that examined the effect of
different distributions between two groups on test sets that also had
varying distributions.  They used three combinations of training and
test sets: 50/50, 80/20, and 90/10 distribution probabilities with the
second number representing bankrupt firms.  Their preliminary find-
ings indicated that classification results for the nine different neural
network models was best when the distribution of the training set
matched the distribution of the test set.  Hence, a representative
training sample that preserves the distribution inequalities of the popu-
lation produces the optimal performance.  Hu et al. (1996) follow the
representative training sample philosophy to construct neural net-
work models that classify Sino-foreign joint ventures as unsuccessful
or successful, with the population having a 90/10 probability distribu-
tion.  The initial results for the Sino-foreign performance classifica-
tion problem were sub-optimal.

Later results on bankruptcy problem that utilizes three different
group membership probabilities (Sharda & Wilson 1996), indicated
that the stratified 50/50 training group (representative for the 50/50
test set only) outperformed all other representative or stratified train-
ing set neural network models on all combinations of test set distribu-
tions (50/50, 80/20, and 90/10).  Unfortunately, the other bankruptcy
and credit scoring neural network research forces a 50/50 representa-
tive distribution and test set by limiting the population and hence the
sensitivity of the smaller group in the real-world to the training set
distribution cannot be effectively measured (Berardi & Zhang 1999).

METHOD
Before presenting the methodology used to investigate the effect

of representative versus stratified training sets for classification prob-
lems that have unequal population distributions, the impetus for con-
sidering a non-representative training set is examined.

Need for Stratification in the Training Set
Whenever a classification problem has equal probability of mem-

bership in each of its categories, then the issue of representative versus
stratified training sets is eliminated.  However, when unequal probabili-
ties of group membership exist, a classification model maximizes its
generalization performance by weighting predictions accordingly
(Klecka 1980, McLachlan 1992).  This means that if a two-group
classification problem has a probability of membership in the first group
of 80 percent, then it should be 80 percent likely that any unclassified
sample belongs to the first group.  Alternatively, an 80 percent classifica-
tion accuracy may be achieved by placing all new observations into the
first group, regardless of actual group membership.

Significant inequality within group distributions may cause cer-
tain neural network and statistical models to maximize their perfor-
mance by effectively eliminating membership in the smaller group.  As
an example, a logistic regression model was constructed for the previ-
ously mentioned Sino-foreign joint venture (Hu et al. 1996).  This
logistic regression model achieved a classification performance of al-
most 91 percent, which was over 2 percent above the closest neural
network model, by classifying all of the joint ventures as not-so-
successful (group 2).  The distribution between the not-so-successful
group and the successful group was 90.84/9.16 for both the training
and evaluation samples.  The disparity of the exclusion effect just
discussed increases as the probability of group membership in the smaller
group approaches zero.

Problem and Data Description
The classification problem used to investigate the effect of strati-

fied versus representative training samples is a loan default/repayment
problem.  The data set is the same as used by Yegorova et al. (2000)
and is acquired from the files of a regional economic development
lender whose role, among other things, is to provide financing to small
companies that are expected to promote job growth and contribute to
the local economy. A cross-sectional review of the industries involved

reveals a variety of businesses including woodworking, paper, boating,
and equipment manufacturing.  The sample used in this paper is limited
to loans extended to small, expanding manufacturing businesses, since
this category has the largest percentage of loans and also includes a
larger proportion of loan defaults.  The lender�s terminated loan port-
folio includes 102 loans made to expanding manufacturing companies.
Terminated loans are defined here as loans that are either paid off by
the borrower or are in default.  Loans that were in non-accrual status as
of the sample date, but not charged-off by the lender, were excluded
from the sample.  This elimination process and incomplete data re-
sulted in only 61 loans with 15 defaults in the final sample.  The
sample data have a 75/25 distribution for the paid off and defaulted
loans made by the lender.

Data from the lender and transformations include 138 variables
representing various loan characteristics.  Selection of the input vari-
ables may have a significant effect on the performance of neural
network, as well as statistical, models (Smith 1993, Walczak & Cerpa
1999).  The focus of the presented research is to evaluate the effect of
stratified training sets and is not concerned with the construction of an
optimal loan default evaluation model and as such selects nine vari-
ables that are common elements in a number of financial ratios.  The
nine variables selected for the presented research models are: current
assets, liability, current liability, inventory, working capital, equity,
sales, cash, and long term debt.  These variables should provide a
breadth of information regarding the loan recipients and still mini-
mizes the size of the neural network to limit extraneous effects from
noise and over-fitting of the data set.

Neural Network Architecture and Training Set Construction
Initially, two different learning algorithms are evaluated,

backpropagation (BP) and learning vector quantization (LVQ).  Each
neural network has the nine input variables (described in the previous
section) and two output variables.  The two output variables serve as
categorical variables for full repayment and default status on the loans.
The use of two output variables representing the different classifica-
tions is required by the LVQ training method and consequently is also
used for the BP training method to eliminate any unforeseen biasing
effects from a different architecture.  Additionally, the use of the two
categorical output variables also eliminates any arbitrary decision re-
garding the optimum cutoff value for a single valued output to be
mapped to the two classification groups.

The size of the networks is minimized to avoid difficulties from
over-fitting the data and each architecture has it�s quantity of hidden
nodes incremented by two until generalization performance starts to
decline, indicating over-fitting of the data (Walczak & Cerpa 1999).
A subset of the full data set is used to determine the best architecture
for each learning algorithm and then these architectures are used ex-
clusively, to again eliminate any bias from using different architec-
tures, to train and test the neural network models anew.  The best
performing architecture for the BP algorithm is a two-hidden layer archi-
tecture with 8 perceptrons in the first hidden layer and 4 perceptrons in
the second hidden layer, while the best performing architecture for the
LVQ algorithm has a Kohonen layer of 18 elements.

The data set is then divided into training and test sets to build and
evaluate the generalization performance of each of the two networks.
The first collection of training and test sets is generated using the
jackknife methodology (a specialization of the bootstrap method)
(Efron 1982), which holds out a single data sample and uses the re-
maining 60 data samples as the training group.  This process is re-
peated 61 times so that every data sample may serve as the single test
case and the neural network is completely re-trained with each of the
60 new training sets to generate an unbiased model.  The jackknife
method produces a collection of representative training sets that main-
tain the 75/25 distribution between the two classification groups.

A technique that is similar to N-fold cross validation or
bootstrapping is developed to create and evaluate different stratified
training sets.  The �modified bootstrap� is a mixture of the jackknife
methodology which guarantees that every member of the population
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will be used in a hold-out sample and the bootstrap which enables
multiple random samples to be held-out simultaneously, thus creating a
smaller training set.  The size of the training sets is governed by the
quantity of samples from the smallest classification group.  As an
example, for the loan evaluation data set, a 50/50 stratified training
set would only permit 14 or 15 (depending on the sample item to be
held out) members of the larger 46 member group.  Each member of
the smaller group is held out a single time, similar to the jackknife,
with training set elements from the larger group randomly selected to
satisfy the distribution requirements.  This process is repeated until all
elements have served as an out-of-sample test item a single time.  Due
to the reduction in the quantity of the larger group members required
for the training set, multiple item tests may be performed on a single
neural network model (derived from a single training set), but care
must be taken not to duplicate the test evaluation of any population
member so as not to introduce any artifacts.

Using the �modified bootstrap� method just described, training
sets that satisfy a stratified distribution of 60/40 and 50/50 are instan-
tiated and used in determining the effects of stratification of the train-
ing sets.  A possible side effect from using the modified bootstrap
method is that the size of the training set is constrained by the quan-
tity of samples in the smallest classification group, such as a maximum
training set size of 28 to 30 samples for the 50/50 stratified distribu-
tion training set.  Since fewer members of the known population are
present in the training set, a negative generalization bias may ensue
(Smith 1993).  Results for the three different training set distributions
are presented in the next section and even if a training bias is intro-
duced through the modified bootstrap method, the stratified training
sets still far outperform the representative training set.

RESULTS AND DISCUSSION
Those neural networks trained using the BP training algorithm ap-

pear to have become trapped in a local minima and produced classification
predictions for all members of the population as belonging to the full
repayment group.  This is similar to the problem encountered by Hu et
al.�s (1996) logistic regression model.  The BP neural network �learned�
to maximize it�s performance by classifying all new data samples as be-
longing to the group that has the highest probability of membership.
While this did produce an overall prediction accuracy of 75.41 percent,
the fact that no defaulting loan applicants are identified carries a large cost
to the lending institution for the classification errors and hence the BP
algorithm is not used further (Berardi & Zhang 1999).

The results of the LVQ neural network models for each of the
three different training set distributions, one representative and two
stratified, is presented in Table 1.  It should be noted that because of
the jackknife and �modified bootstrap� approaches, the classification
accuracy for the LVQ neural networks are for all 61 members of the
population and generated from up to 61 different training sets (for the
representative 75/25 training group using the jackknife).

The smaller group 2 classifications appears to mirror the prob-
ability of membership in the training set until the equally distributed
50/50 stratified training set is used and then it jumps to well over 50
percent classification accuracy.  As a further test of this statement,
stratified training sets are constructed using the modified bootstrap
approach with a group distribution of 65/35.  The newly constructed
training sets are then used to build neural network classification models
that are subsequently used to evaluate only the loan default group 2
test cases.  This experiment yields a classification accuracy of the loan
default, group 2, members of 37.5 percent.

While the classification accuracy of the smaller loan default group
members continues to rise as the probability of group membership
approaches equality across the two groups, a corresponding decrease in
the classification accuracy of the larger full repayment group members
does not occur.  This result is unexpected since the much heavier
emphasis in the training set for membership in the full repayment
group, group 1, should bias the classification results of the associated
neural network model accordingly.

To demonstrate, the 61 members of the loan classification popu-
lation are divided into two distinct groups: one that contains only the
46 members of group 1, the full repayment group, and the other that
contains only the 15 members of group 2, the loan default group.  This
produces two populations that have membership probabilities of 100/
0 and 0/100 respectively.  A jackknife procedure is used to build LVQ
trained neural network models to predict the group membership of
these two populations, using the same architecture previously described,
with two output categorical variables.  The resulting neural network
models both produce 100 percent accuracy in classifying all test cases
as belonging to the corresponding group.  Similar to what happened to
the BP neural network mentioned at the beginning of this section,
these two monotype populations demonstrate that very large biases
(maximum in this case) can produce corresponding probabilistic (cer-
tainty) biases in the output of a neural network.

The LVQ neural networks, unlike the BP neural network, are
trying to accommodate the presence of two groups in the population.
The difficulty arises in that the representative group does not provide
enough information for the LVQ neural network to adequately distin-
guish between the two-group membership criteria.  Even though the
number of group 2 (loan default) members in the training set stays the
same (as in the representative set) in the stratified training sets, the
relative importance of the group 2 members increases to 40 and 50
percent of the population, as recognized by the training set.  The more
balanced representation prevents the larger group from dominating
the training and enables the LVQ neural network to more adequately
determine the membership criteria for all of the classification groups.
This balanced knowledge from the 50/50 stratified training set is what
enables the neural network to improve its classification accuracy for
both groups in the classification problem.

SUMMARY
The research presented in this article demonstrates that neural

network solutions to two-group classification problems with small
data sets are maximized when the training sets used to build the neural
network classification models are stratified to contain equal member-
ship from each group. This is particularly important for those real-
world problems that have unequal membership probabilities.  These
findings may help explain some of the less than optimal results from
previous research (Hu et al. 1996) with neural networks that utilize
representative training samples from unequally distributed populations.
For the loan repayment classification problem presented in the ar-
ticle, moving from a 75/25 representative training set to a 50/50
stratified training set increased the classification accuracy of the neu-
ral network model by over 16 percent.

A modified bootstrap method is described to enable the maximum
use of population members in training sets, while still maintaining a
stratified balance between the group memberships in the training set.
Additional research is needed to extend these results to N-group classi-
fication problems, where N is greater than two, with unequal probabili-
ties of membership in the various groups.
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Training Set 
Distribution 

Repayment (Group 1) 
Classifications (N = 46) 

Default (Group 2) 
Classifications (N = 15) 

Overall Classification 
Accuracy 

Representative 75/25 
33 (71.74 %) 4 (26.67 %) 60.66 % 

Stratified 60/40 
36 (78.26 %) 6 (40.00 %) 68.85 % 

Stratified 50/50 
37 (80.43 %) 10 (66.67 %) 77.05 % 

 

Table 1: LVQ neural network classification performance for 3
different training set distributions
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