
Issues and Trends of IT Management in Contemporary Organizations 713

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ABSTRACT
Shared collaboration between distributed users gains more importance due to the globalization of organizations and institutions. Beside
exchanging audiovisual data, sharing spreadsheets or graphics is of utmost importance, especially in scenarios for tele-working or tele-
education. Although the Internet has gained more ground in our daily work, most applications nowadays are not prepared for shared
collaboration, and it is expected that this non-awareness of distribution will remain persistent for most of the applications. For that,
application sharing technologies have been developed to encounter the problem sharing these kind of applications among a set of
distributed users. Two different paradigms to realize application sharing can be distinguished, namely sharing the application�s output
or the application�s evolving state. In this paper, the realization of an application sharing service is presented, based on the latter
paradigm, which is mostly suited for closed development or teaching scenarios. The requirements for the service as well as its realization
are outlined, together with the lessons we learned from this realization.

Implementing the Event Sharing Paradigm: The
Multipoint Event Sharing Service (MESS)

Erik Molenaar
Department of Computer Science 4, University of Technology Aachen, Germany, erik@molenaar.de

Dirk Trossen
Nokia Research Center Boston, Tel: (781) 993-3605, Dirk.Trossen@nokia.com

INTRODUCTION
For collaboration among a group of users, sharing audiovisual,

textual, graphical, or even interface-related information is the essence
of systems that realize computer supported collaborative work (CSCW).
Several toolkits have been developed and studied in the past. Since
most applications, being used in private and work life nowadays, are
merely usable on the computer on which they are executed,
collaboratively working with a single application is the most challeng-
ing part of CSCW. This is not only true because these applications are
not aware that they are executed in a distributed environment, but in
particular because of the numerous possibilities of data to be shared
among the distributed users, when performing a local application.

Thus, the distribution of the application�s functionality over the
network has to be added transparently and, more important, subse-
quently without changing the application�s semantic. The effect has
to be created at each remote site that the application is running locally
and therefore can also be controlled by any remote user with a more or
less immediate effect to the application.

The realization of application sharing involves the synchronized
transfer of application-specific data among users, and it faces several
challenges to be solved [6]. The number of interception points is part
of the indicator for overhead that is added to the system, together with
the amount of transferred data per interception. Each application
sharing technique intercepts the local system to gather the required
information and to build an appropriate data packet to be distributed
among the users. This packet has to be transferred through the local
protocol stack. These actions degrade the overall system performance.
As a consequence, a small number of interceptions is desired, while
keeping the amount of transferred data per interception low.

Independence from the member�s operating system, i.e., hetero-
geneity of the users� system, is crucial for a wide applicability of the
technique. Moreover, latecomer�s support should be provided without
leading to inconsistencies of the application�s state. To each shared
application, input data is usually fed into to evolve in subsequent
states. However, this shared data problem should not lead to inconsis-
tencies of the distributed application instances. And eventually, the
copies of the application have to be kept in synchronization to ensure
consistency of the workspace among all users due to the different
processing speed of the sites and the different transmission delays.

Two different paradigms can be distinguished to tackle the
abovementioned challenges, namely Output Sharing and Event Shar-
ing. In [6], a qualitative comparison of both paradigms is presented,
outlining the different application scenarios for both paradigms. It was

concluded that the latter is best suited for closed group environments
with a limited set of input data to be shared. As a consequence, it seems
to be a promising candidate for shared engineering [7], multimedia
presentation, or tele-teaching scenarios. The event sharing paradigm
is based on the assumption that if a set of identical applications is
executed with the same start state and evolves using the same sequence
of events, its timeline evolution is identical on each site. In the light of
this assumption, the approach can be outlined as follows:
� grab the start state to be distributed among all group members
� start local copies of the application to be shared on each host
� distribute input events of the currently controlling user to evolve the

current application�s state
Although the approach seems fairly simple, coping with the

abovementioned challenges is not at all an easy task. Especially the
shared data problem and the determination of the start state of the
application can be seen as the main challenges when realizing the
paradigm.

This paper presents a realization of the event sharing paradigm,
called Multipoint Event Sharing Service (MESS), outlining the archi-
tecture and the implementation issues to be addressed. For that, a
component-based architecture is presented, which is mapped onto an
object-oriented design to bring the system to life. The currently pro-
vided functionality and obtained performance is described, which is
very encouraging, especially for the targeted application scenarios.
However, the realization encounters several difficulties, which will be
presented as the lessons we learned from our work.

The remainder of the paper is organized as follows. Section 2
defines the requirements for the presented work, while Section 3 out-
lines the architecture and realization of the application sharing ser-
vice. Section 4 discusses lessons we learned, while Section 5 gives
pointers for further reading. Section 6 eventually concludes the paper
with a discussion of our future work.

REQUIREMENTS
The main requirement for an application sharing service is to

enable a synchronous view of an application on several participating
computers. In [6], the idea was formulated to investigate the possibili-
ties of applying the event sharing paradigm and the gain it can offer. In
this work, a realization of an event sharing service is proposed. Its
design will be a consequence of the requirements, presented in this
section. Before outlining the requirements, some definitions and theo-
retical background are needed.

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4286
IDEA GROUP PUBLISHING

714 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Definitions and Background
The state of an application describes the current snapshot of the

application itself and all resources it addresses. Resources can be any-
thing that is not the application itself, but is changed or used by the
application to determine its behavior. Examples are files, registry
entries, or the system time. Phenomena that change the application�s
state are called events.

A stable state of the shared application is given, if the execution
behavior of all instances is equivalent. For example, if a menu entry is
selected, the same action belonging to the corresponding menu entry
should be performed on all machines. This stable state will sometimes
be referred to as being in a consistent or equivalent state.

Deterministic behavior of an application means that if a set of
this application is started in an equivalent state, and the same set of
events is presented to those instances, then the same state transi-
tions will happen for all instances. It is important to realize that
this definition of deterministic behavior is more relaxed as other
definitions, in the sense that resources, that an application might
need, are considered as part of the environment. Where other defi-
nitions might assume that an application is no longer behaving
deterministically if e.g., the system time of the local machine is
used, this definition regards the system time as a part of the envi-
ronment.

Given an application that behaves deterministically, the follow-
ing statement is valid:
Theorem 1: A set of instances of an application that behaves determin-

istically can be held in a stable state if the starting state and all
events can be captured.

The proof of this statement is a simple induction: Assume all
instances in stable state at the beginning. Since every event can be
captured, these events are fed into each of the instances to initiate a
transformation of state. Because of the definitions of state and event,
these successor states are stable again from a viewpoint of a neutral
observer somewhere in the session.

Requirements
Apart from the major requirement that the application to be

shared must behave deterministically, the following requirements for
the application sharing service can be defined to keep the shared
instances in stable state over the timeline:
� All participating instances must start in an equivalent state.
� During runtime of the session, all events that change the application�s

state must be captured and broadcast to all participants.
� If some events access resources, these must be provided to all partici-

pants.
� Synchronization of instances must be offered.

In addition to these functional requirements, the following minor
requirements have to be addressed by a realization:
� An interface with the participant has to be offered.
� Distributed messages that are sent have to be marshaled, i.e., being

transferred in a common syntax.
� Latecomer�s support has to be addressed.

Since a shared application service is using resources from existing
conferencing systems, such as [5], the following requirements for this
part of the system can be derived:
� Conference management, i.e., joining and leaving conferences, should

be provided.
� Floor control is needed to prevent multiple participants to control

the application simultaneously.
� Reliable message transport shall be provided with global ordering of

messages.
� If possible, multicast capabilities shall be utilized.

The abovementioned requirements will be used as a foundation
for the design of an application sharing service based on the event
sharing paradigm.

MULTIPOINT EVENT SHARING SERVICE
(MESS)

Based on the abovementioned requirements, the Multipoint Event
Sharing Service (MESS) is presented to realize the event sharing para-
digm.

Architecture
Figure 1 left shows the components of the MESS architecture,

reflecting the practical proof of Theorem 1, i.e., the concept of start-
ing in an equivalent state and evolving during runtime of the session.

This concept is reflected by the Starter/Static Replicator and the
Dynamic Replicator components. For these components to function,
they need some utility components. At the currently controlling ap-
plication side, the Interceptor gathers required event information. The
resources that are used by these events are recognized through the
Resource Grabber. The actual sending of both the needed resources
and the events is prepared by the Sender/Synchronizer. This compo-
nent also takes care of the synchronization and offers latecomer sup-
port. The required conferencing and data transmission functionality is
provided by the Conferencing component, and the interaction with
the participant and coordination of components are performed through
the Controller.

This component architecture can be transformed in a UML frame-
work, as shown in the right part of Figure 1. It is a straightforward
mapping of the components onto classes with dedicated methods. This
framework acts as the foundation of the actual implementation of the
MESS architecture.

Interceptor

Application

Controller Resource
Grabber

Starter/Static
Replicator
Dynamic
Replicator

Synchronizer/
Sender

Conference

Interceptor Replicator

DynamicReplicator Starter/
StaticReplicator

ResourceGrabber
Sender/Synchronizer

Synchronizer

Sender

Conference

Marshal

Controller

Figure 1: MESS architecture

The tasks of each component are described in more detail in the
following sections.

Controller
The Controller has to start the service, implement the chosen

policy for conference management, and provide a mechanism for a
token management policy.

Interceptor
The Interceptor gathers required event information to be shared

among the users and to be used for synchronization. Two kinds of
events need to be handled. The first includes events originating from
the user (user events). Examples are mouse movement, mouse buttons
pressed, and keyboard keys pressed. The second type of events origi-
nates from the system. These system events have to be handled sepa-
rately. As an example consider an application that renders and shows
an animation. The animation speed will depend on the processing
speed of each individual computer. If the event sharing service merely
shared the user events, the participating computers would get more out
of sync during runtime, since their speed is not the same, although

Issues and Trends of IT Management in Contemporary Organizations 715

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

they were started synchronously. To cope with this effect, the progress
in execution can be monitored and steered by system events. These
events are not actually required to be shared since they are caused by
the program execution as such, and therefore they should appear on all
participating instances of the application. However, monitoring these
events is required for synchronization.

Resource Grabber
The task of the Resource Grabber is to locate and identify all

resources, including the application, on the controlling end-system
and distribute this information among the group to ensure a consistent
state of the application.

Starter / Static Replicator
This component takes care of all instances of the application to

be in an equivalent state upon startup. It decides what resources will be
distributed, and it takes care that the local settings for each participant
are brought in a consistent state. For that, the input of the Resource
Grabber is used.

Dynamic Replicator
The Dynamic Replicator is responsible for keeping all participat-

ing applications in an equivalent state after the session has started by
appropriately sharing event information, determined by the Intercep-
tor, among the group.

Synchronizer / Sender
The Synchronizer/Sender is responsible for synchronization and late-

comer support. For synchronization of user events, these events are
broadcast, while all application instances are halted locally. After success-
ful delivery, the next user event is processed. For system events, the
application is halted after n events have been counted. These events are
not broadcast since they are generated by the system on each of the
participating instances. Only after n system events have been processed
on all instances, application progress is resumed. For latecomer support, a
form of state dependent startup of the participating application is needed,
which could be provided using a log file of previously occurred events.

Conference Control
This component deals as an interface to the underlying

conferencing system, using functionality for conference management,
floor control, and transport functionality.

Realization
The proposed MESS architecture was implemented as a proto-

type to demonstrate the feasibility of the event sharing approach.
Although the current design allows for sharing all types of events and
resources, the actual implementation has to make certain tradeoffs to
keep the realization simple and feasible, but also to demonstrate the
potential of the proposal. As a naive approach, one could try to
watch and share every thinkable resource. This is neither necessary
nor desired. Instead, one has to make a tradeoff between maximizing
the limitation in bandwidth and system overhead on one hand and to
minimize the amount of applications that need services that are not
implemented as a result of the first on the other hand.

As a consequence, no system events are shared at this time, and
there is no synchronization among the participants. Moreover, re-
source distribution among the participants is not provided. The cur-
rent demo application is merely meant to experiment with the distri-
bution of user events and to test the resulting functionality of applica-
tions that are shared in such a primitive environment. This function-
ality reflects the most important part of the service, namely the
evolution of the application�s state, and therefore demonstrates the
ability of the concept to provide application sharing for certain sce-
narios. However, the missing functionality is easily integrated, since it
mostly deals with capturing additional events, and synchronizing these
appropriately at the controlling site.

As demonstration scenarios, simple text-editing as well as rota-
tion of complex 3D objects are performed. The latter in particular
happens in shared engineering scenarios, as described in [7], and is well
suited to demonstrate the potential since it generates certain graphical
output. However, due to the missing synchronization functionality,
the computers usually run out of sync after a certain timeframe, which
demonstrates the necessity of this functionality, i.e., to slow down the
faster end-system(s) appropriately.

EVALUATION AND LESSONS LEARNED
The MESS architecture can be evaluated as regards to complex-

ity, functionality as well as resulting performance.
The proposed components add certain complexity to each end-

system. The variety of state information to be grabbed and distributed
usually varies in modern operating systems, e.g., script files or registry
settings. However, collecting this information can be realized at cen-
tral points by intercepting appropriate system calls, e.g., for reading
registry settings. Similar to state information, event interception can
also be realized centrally by intercepting appropriate system calls.
Thus, the added overhead to the operating system is usually fairly
minimal and centralized.

Although the proposed MESS architecture provides application
sharing functionality for any kind of application with deterministic
behavior, the actual functionality highly depends on the maturity of
chosen implementation detail. For that, a tradeoff has to be made
between the set of supported applications and the chosen complexity.
For instance, the demonstration application shows that synchroniza-
tion is necessary for many scenarios, though surprisingly many sce-
narios can be covered with limited or even no synchronization at all.

Performance of the proposed architecture can be evaluated in
two dimensions. First, the added overhead to the system due to the
interception to gather and distribute event information is a major
performance measure. For that, the demonstration application shows
that this additional overhead is fairly small. However, adding more
system events and resources to the pool of information certainly
decreases the overall performance, although the transmitted informa-
tion remains small. As a second measure, the bandwidth consumption
of the service is of importance. An estimation for the bandwidth
consumption during runtime can be made based on the text-editing
demonstration. Assuming a reasonable amount of entered text, e.g.,
250 characters per minute. Further, assume one sync event after each
pressed key as a conservative approach. Thus, the bandwidth con-
sumption would be less than 700 bits per second with an event size of
16 bytes and a synchronization message size of 2 bytes. In the ex-
ample of rotating 3D objects, the overhead to the system and the
consumed bandwidth is even smaller since user events are usually gen-
erated with a smaller frequency. However, the bandwidth consumed for
distributing resource information heavily depends on the amount of
gathered information and the application as such. The more resources
are used, the more information has to be distributed, either during
startup or runtime of the session.

As a summary, the most important lesson we learned was that the
basic concept of event sharing works with an impressive speed by
leveraging local processing speed for the application functionality.
However, we also learned that the integration of some system events
with an additional synchronization to cope with different processing
speeds highly increases the spectrum of applications that can be used
with the system.

FURTHER READING
Most available application sharing systems implement the GUI

sharing paradigm, of which many are based on the X-Windows system,
comprised of a central server on which the application is executed.
The application�s output is redirected to X Windows clients for render-
ing. Extending this system to a multipoint scenario, as done in [1][4][8],
enables a shared application system for cooperative working. How-

716 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ever, floor control facilities have to be added for coordinated control,
which was done in [1][4].

Despite the wide deployment of X Windows systems, their appli-
cability is mainly restricted to Unix systems. Although X Windows
client software is available for other platforms, the problem remains
to share for instance MS Windows software on other platforms. Hence,
the heterogeneity problem is only partially solved when using an X
Windows system. To tackle this problem, the ITU proposed a proto-
col for multipoint application sharing [3], defining platform-indepen-
dent rendering and interception functionality. The disadvantages of
this approach are mainly its underlying shared GUI approach, and
therefore the overhead on the server system, and the usage of an
ineffective transport system, which is defined in the ITU T.120 stan-
dard.

The work in [2] realizes the event sharing paradigm by replicat-
ing the entire data workspace before starting the application copies.
Dynamically including shared data is not supported. Synchronization
among the different copies is ensured for every incoming event, lead-
ing to a significant overhead instead of using specific synchronization
events for overhead reduction. Moreover, the event mapping and
distribution is realized on a central server. Hence, the proposal follows
a distributed application, but a centralized control approach.

FUTURE WORK
The proposed MESS architecture allows for sharing start state

and event evolution of applications among a set of local copies in a
shared workspace scenario, i.e., it implements the event sharing para-
digm. However, the functionality of our demonstrator is currently
restricted for the sake of simplicity.

In our future work, this functionality is to be increased, starting
with the synchronization functionality to cope with out-of-sync ef-
fects. Moreover, finding some optima for the applications that can be
served by the MESS while keeping the used bandwidth to a minimum is
a field of future work.

In addition to enriching functionality, more systematic evalua-
tion scenarios have to be defined to become a clear view of the over-
head added to the system. Moreover, the demonstration system is used
within a project, realizing a workspace for shared engineering (see
[7]).

REFERENCES
[1] M. Altenhofen, et al.: The BERKOM Multimedia Collaboration

Service, Proceedings ACM Multimedia, 1993
[2] M. C. Hao, J. S. Sventek: Collaborative Design Using Your Favorite

3D Application, Proceedings IEEE Conference on Concurrent Engi-
neering, 1996

[3] ITU-T: Multipoint Application Sharing, ITU-T Recommendation
T.128, 1998

[4] W. Minenko, J. Schweitzer: An Advanced Application Sharing Sys-
tem for Synchronous Collaboration in Heterogeneous Environment,
SIGOIS Bulletin, vol.15 no.2, pp. 40-44, 1994

[5] D. Trossen: Scalable Conferencing Support for Tightly-Coupled
Environments: Services, Mechanisms, and Implementation Design,
Proceedings IEEE International Conference on Communications,
2000

[6] D. Trossen: Application Sharing Technology: Sharing the Applica-
tion or its GUI ?, Proceedings IRMA, 2001

[7] D. Trossen, A. Schueppen, M. Wallbaum: Shared Workspace for
Collaborative Engineering, to appear in Annals of Cases on Infor-
mation Technology, Volume IV

[8] K. H. Wolf, K. Froitzheim, P. Schulthess: Multimedia Application
Sharing in a Heterogeneous Environment, Proceedings ACM Multi-
media, 1995

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/implementing-event-sharing-

paradigm/31886

Related Content

Management and Cost Estimation of Security Projects
Yosra Miaoui, Boutheina A. Fessiand Noureddine Boudriga (2015). Encyclopedia of Information Science

and Technology, Third Edition (pp. 5114-5125).

www.irma-international.org/chapter/management-and-cost-estimation-of-security-projects/112960

A Framework for Self-Regulated Project-Based Learning in Higher Education
Mohamed Yassine Zarouk, Francisco Restivoand Mohamed Khaldi (2019). Educational and Social

Dimensions of Digital Transformation in Organizations (pp. 218-273).

www.irma-international.org/chapter/a-framework-for-self-regulated-project-based-learning-in-higher-education/215144

Light-Weight Composite Environmental Performance Indicators (LWC-EPI): A New Approach for

Environmental Management Information Systems (EMIS)
Naoum Jamous (2013). International Journal of Information Technologies and Systems Approach (pp. 20-

38).

www.irma-international.org/article/light-weight-composite-environmental-performance/75785

The Extend Customer Requirement Factors Based Service Level Evaluation for Manufacturing

Enterprises: Service Level Evaluation for Manufacturing Enterprise
Qing Liu, Shanshan Yu, Gang Huangand Xinsheng Xu (2019). International Journal of Information

Technologies and Systems Approach (pp. 22-42).

www.irma-international.org/article/the-extend-customer-requirement-factors-based-service-level-evaluation-for-

manufacturing-enterprises/230303

Team Neurodynamics
Ron Stevens (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 5624-5632).

www.irma-international.org/chapter/team-neurodynamics/113016

http://www.igi-global.com/proceeding-paper/implementing-event-sharing-paradigm/31886
http://www.igi-global.com/proceeding-paper/implementing-event-sharing-paradigm/31886
http://www.irma-international.org/chapter/management-and-cost-estimation-of-security-projects/112960
http://www.irma-international.org/chapter/a-framework-for-self-regulated-project-based-learning-in-higher-education/215144
http://www.irma-international.org/article/light-weight-composite-environmental-performance/75785
http://www.irma-international.org/article/the-extend-customer-requirement-factors-based-service-level-evaluation-for-manufacturing-enterprises/230303
http://www.irma-international.org/article/the-extend-customer-requirement-factors-based-service-level-evaluation-for-manufacturing-enterprises/230303
http://www.irma-international.org/chapter/team-neurodynamics/113016

