
Issues and Trends of IT Management in Contemporary Organizations 697

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Executable Modeling with UML:
A Vision or a Nightmare?

Bernhard Rumpe
Software and Systems Engineering, Munich University of Technology, Germany

Tel: +49-89-45364800, Fax: +49-89-45364738, Rumpe@in.tum.de
ABSTRACT

Extreme Programming is the most prominent new, light-weight (or agile) methods, defined to contrast the current heavy-weight and
partially overloaded object-oriented methods. It focuses on the core issues of software technology. One of its principles is not to rely on
diagrams to document a system. In this paper, we examine what properties a modeling language like UML must have in order to support
the Extreme Programming approach effectively. In particular, we discuss how such a diagrammatic programming language must look
like to replace a textual programming language and what benefits and problems such an approach may bring.

INTRODUCTION
Extreme Programming (XP) [1] is a light-weight methodology

for small and medium-sized teams developing software with rapidly
changing or enhancing requirements. XP is an explicit reaction to the
complexity of today�s modeling methods like the Unified Process
[12], the OPEN Toolbox of Techniques [7], or Catalysis [3]. XP
primarily tries to focus on the best practices of software development,
and contrasts strongly the heavy-weight and partially overloaded ob-
ject-oriented methods by its simplicity.

In all engineering disciplines nowadays, software engineering ex-
cluded, there exists an established engineering process to develop a
system, which is accompanied by a number of suited modeling descrip-
tion techniques. Software engineering, being a rather new field, has not
as yet established any clear methodical guidance or a fully standardized
modeling notation. The XP approach does not try to create a detailed
software engineering process, but to focus mainly on programming
since it is �fun for the programmer� [1]. The current success of this
approach suggests that software engineering may either be completely
different from other engineering disciplines or that the software engi-
neering discipline simply isn�t mature yet. The former has its justifica-
tion in the fact that software is totally immaterial, whereas all other
engineering products have a physical manifestation. Therefore, it is in
principle far easier to change already existing software, even if it had
been shipped and installed millions of times.

One of the distinct features of XP is the lack of any documenta-
tion whatsoever, except for the code itself. This is a contraposition to
the modeling techniques like the Unified Modeling Language (UML)
[2], [15] which strongly focus on documentation. XP takes an ex-
treme position there, not even documenting the architecture of the
system. Often, it is very difficult to extract the overall structure,
behavior or interactions with the environment from the code. The
code is a rather detailed and fragile representation of the system�s
tasks. Even though the code contains all necessary information about
the system, this information is often burdened with details and it is
tedious to extract the aspects one is interested in. Therefore, it would
be useful to have a more compact system representation. The UML
does provide a number of notations that are suited for this purpose.
However, the tools so far are not capable of supporting UML in such
a manner that it can be well-integrated with the approach of Extreme
Programming.

This paper explores which kind of concepts, tools and techniques
are needed to make UML suitable for an �extreme modeling� ap-
proach. The XP approach is basically a programming approach, but
replacing the underlying programming language by an executable ver-
sion of UML.

In Section 2, we explore techniques and tools needed for the
UML to support the extreme modeling approach. In Section 3, we
examine in detail UML�s actual version and how far it supports ex-
treme modeling. In Section 4, we are going to examine description

techniques of the UML that are executable or of use for testing. In
Section 5, we discuss our vision of the UML to support the extreme
modeling process in the future. In Section 6 we finally discuss draw-
backs and changes of such an approach.

PROPERTIES NEEDED FOR UML TO
SUPPORT EXTREME MODELING

UML is, as its name states, a modeling language. The OMG,
standardizing UML, explicitly wants it to remain independent from
methodical issues. Therefore, the language UML is usable for a variety
of purposes. Unfortunately, current tool support for UML is definitely
insufficient for many of the purposes for which UML can be used. In
this section, we are going to explore what UML needs in order to be
able to replace a programming language in the XP approach. We have
identified the following six important issues:
1. UML needs to be fully expressive,
2. UML needs to be a more compact notation than an ordinary pro-

gramming language,
3. UML needs an effective translation into efficient code,
4. UML needs support for testing,
5. UML needs a simple and usable module concept,
6. The tool support must be adequate.

Let�s explain the above issues: if UML is going to replace an
ordinary programming language, it needs full expressiveness. This has
two different flavors; from theory, we know that full expressiveness
means Turing computability. All ordinary programming languages, be
they object-oriented, structured or functional, have basically the same
power of computability, namely, the power of the Turing machine.
Therefore, the executable version of UML must also provide the
possibility of defining any computable function.

For practical purposes, it is also important that the modeling
language we use is expressive enough to describe the connection to the
graphical user interface and to the operating system, as well as e.g.
distribution aspects, just as today�s ordinary programming languages
provide by means of appropriate libraries.

One of the advantages of a diagrammatic language will surely be
that it can describe structural and behavioral issues in a way more
compact and easy to survey than ordinary textual programming lan-
guages can. In the case that the UML becomes fully expressive, this
advantage has to be maintained.

An effective translation into efficient code is the most critical
issue for the Extreme Programming approach. The effective transla-
tion means that a compiler from UML to executable code is fast and
reliable. The generated code itself must be fast and robust in order to be
accepted by users and programmers. Of course, each translation of
higher order concepts into a less rich language generates some over-
head, but this overhead must be efficient, small, and not too time-
consuming. This situation can be compared to object-oriented lan-

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4282
IDEA GROUP PUBLISHING

698 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

guages versus structured languages, where the concept of objects gener-
ates some overhead which is today efficient enough to have no serious
impact on computation time.

In Extreme Programming, the system code and the testing code
are both written in the same programming language. In UML, it may
be of interest to identify a subset of the language dedicated to specifi-
cation of tests and to check them during the run-time against the
executable model. Moreover, like in any other language, it is impor-
tant to have a module concept that allows us to encapsulate internal
implementations. Only a clear concept of interfaces between the mod-
ules and concepts used in the language allow us to distribute and thus
parallelize labor among the team.

Finally, tool-support for the techniques discussed above are cru-
cial to the whole approach. Extreme Programming and extreme mod-
eling as such heavily rely on appropriate tool support.

UML TODAY
Based on the needs identified in the last section, we are now going

to identify which properties are already satisfied by UML or how to
reshape UML to make it usable for the XP approach.

Is UML Fully Expressive?
UML consists of several parts. Looking at the diagrammatic part

only, UML is not expressive enough to describe each computable
function. However, this is not fully clear today because UML seman-
tics is not as precisely defined as necessary to clarify this question. If
we also regard the Object Constraint Language (OCL) [21] we find a
rich textual language to describe properties of our system. Even though
the OCL is a first-order language, it is very much in the spirit of being
executable. UML coupled with an executable sub-language of OCL will
be expressive enough to describe each possible computation function.

The question of how to access graphical user interfaces and oper-
ating systems, and other issues of this kind will probably be solved in
the same way as in ordinary programming languages. This means, we
need to provide modeling libraries especially suited for these issues,
that have a hard-coded implementation. Providing modeling libraries
for reusable code would, of course, always be useful.

Is UML More Abstract Than an
Ordinary Programming Language?

If used in a version similar to the current UML 1.3, we can clearly
say: Yes, it is more compact than any existing ordinary programming
language. This comes from the fact that UML offers a number of
higher-level modeling concepts, allowing a rather compact description
of certain properties of the system. Describing such a property in
ordinary programming language needs considerably more lines of code.

Besides being more compact, abstraction has a second, closely
related advantage. A notation is more abstract, if it allows to disregard
certain details of the implementation. In UML e.g. it is possible to
draw an association without specifying how this association is imple-
mented. Instead, a tool may decide what is the best way to implement
the association if this is at all necessary. This may depend on the usage
of associations, as well as on the used heuristics to produce code in the
tool. However, the implementers should not care about this.

Is There a UML Compiler into Efficient Code?
Not today. For a large part of UML diagrams today, exists not

even a single translation into code at all, though many of the UML
diagrams look like being executable (see also Section 4.).

Today�s tools mainly focus on translating class diagrams into
codes and vice versa. This technique is called round-trip engineering
and reminds on early stages of compilers from Pascal, Basic or Cobol
into assembler code. In these early phases, people had less confidence
in their compiler, so they generated assembler code which could be
viewed and changed by hand, if necessary, before generating object
code. If history repeats, round-trip engineering will vanish sometime

and UML models will directly be translated into object code without
any intermediate programming language notation.

Is UML Suited for Testing?
Yes, UML clearly has potential to model tests as well as the

executable code. Sequence diagrams and collaboration diagrams both
are exemplaric notations that allow especially to describe expected
behavior and expected changes of the object structures. Thus both
notations are well-suited to describe tests for the system. We already
know that UML provides a more compact code description than an
ordinary programming language does. But, the tests can also be de-
scribed in a more compact way, giving rise for specification-based
testing. This is, of course, only feasible if appropriate tools for this
kind of testing actually exist.

Does UML Have an Appropriate Module Concept?
The concept of a module is the basic constituent for program-

ming in the large. Only appropriate module concepts allow to struc-
ture the work in a team leading to a parallelization of work, therefore,
to a smaller time-to-market. As modules interact, a clear concept of
interfaces between modules of the software system becomes indispens-
able.

In object-oriented programming languages, the concepts of class
and package fulfill the requirements for modules. Classes provide a
name space that allows hiding of the implementation details and hav-
ing a clear interface to clients of the class. However, classes are rather
low-level. If a system has hundreds of classes, it is necessary to have
appropriate structuring mechanism beyond single classes. Therefore,
UML uses its package concept to structure classes. This package con-
cept is rather powerful but, so far, not fully elaborated and understood.
It seems to be inappropriate to some extent due to the lack of clear
interfaces between the packages, even if the package concept can be
probably adapted to describe interfaces between modeling elements.
Packages do have a name space. However in their current usage, it is
not possible to define package interfaces explicitly. Such an interface
could be used to explicitly export parts of a package to another one,
i.e. to a part of defined classes or type definitions. Due to the lack of
sufficient, precise specification or even of a powerful tool support for
UML packages, it is not clear so far whether packages will fully sup-
port the possibility of separation of concerns, and therefore, localiz-
ing changes of the software to smaller parts.

Is There Adequate Tool Support for UML as Extreme
Modeling Notation?

Today UML does have an extensive tool support. These tools,
however, focus strongly on editing and version control support. Apart
from generating code frames and supporting round-trip engineering
with class diagrams to a limited extent, there is no extensive tool
support today for the UML. Besides the main-stream UML tools,
there are a number of tools originating from earlier efforts that have
at least some of the concepts mentioned above. Some examples are
ROOM [20] or as called today UML-RT, Statemate based on the
StateChart formalism [5], and a number of more academic tools like
AUTOFOCUS [8].

To summarize - UML has potential for a high-level programming
language. However, a number of minor flaws need to be fixed, and
especially an executable subset of UML needs to be identified. The
main obstacle remains the lack of appropriate tool support for an
executable UML that goes far beyond class diagrams and that is reliable
enough.

CAN UML BE EXECUTED?
UML has many interesting facets, some of them already investi-

gated in the last section. Here, we discuss which of the UML models
can be executed.

Apart from the question whether UML should be executable,
that will be discussed in Section 6, let us discuss the question of whether

Issues and Trends of IT Management in Contemporary Organizations 699

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

UML can be executable. The answer is: yes. There is a large subset of
UML modeling techniques that can actually be animated. Among them
are the UML class diagrams, StateChart diagrams, the Object Con-
straint Language, activity diagrams and sequence diagrams.

 StateChart

class

object code

sequence

code generation

test code

object

OC

Figure 1

Class Diagrams
How to generate code out of class diagrams is already well-under-

stood. Also, the reverse direction, how to generate class diagrams out
of the code is implemented in many UML-based tools today to allow
round-trip engineering. From the mathematical point of view, these
two mappings are not isomorphisms, which means that mapping class-
diagrams to code looses information. It especially looses information
about weak or strong aggregation and some information about its
associations. Mapping code to class diagrams also looses information,
since e.g. method bodies are not (officially) represented in the class
diagram. This is due to the fact that a class diagram is an abstraction of
the real system that mainly deals with structure.

Besides class diagrams, there are also object diagrams that deal
with structure. Whereas class diagrams define and constrain potential
structures of a system, an object diagram defines an actual structure of
objects in a system in a certain situation. Therefore, object diagrams
operate on the instance level. This makes it easy to generate code out
of an object diagram, e.g. a code that builds up the object structure.
However, there is only poor tool support today for this kind of dia-
grams.

StateChart Diagrams
In the embedded systems area where control states are a major

issue, one is acquainted with the description of complex controlling
systems using state machines. In UML, the corresponding notation
called StateCharts can also be used to describe behavior of single ob-
jects. According to David Harel, StateCharts are the engine of the
UML model [6]. StateCharts are a more descriptive and elegant way to
describe automata or state machines, and StateCharts are therefore
strategies of how to execute the behavior. Thus, it is not surprising
that StateCharts are executable and a number of tools, among them
also Statemate, demonstrate their efficient executability. Even though
and syntax of StateCharts, as used within UML, are syntactically and
semantically, as well as from methodical usage slightly different from
the original StateCharts definition [5], StateCharts in UML still re-
main executable, as e.g. the tool ROSE-RT demonstrates.

OCL
The UML diagrams are a powerful set of techniques to describe

different views on a software system. Generally though, they are not
capable of describing every possible property. The textual constraint
language OCL, therefore, has been added to the UML in order to
describe properties not to be conveniently captured by diagrams. OCL

claims to be a first-order specification language and it has actually the
concept of quantification included. However, a close examination of
OCL shows that almost all concepts are executable and OCL can be
regarded to a large extent as a functional programming language like
ML [17], Haskell [9] or Gofer [13]. An interesting aspect concerns
the quantifiers. There is an existential and an universal quantification.
Assuming there exists a class Person with an attribute age, we can write
the following OCL constraint:
Person.allInstances->forall(p | p.age > 4)

For a specification language, OCL does have an unusual syntax.
The above invariant ensures for all existing persons in a system the
attribute age greater than 4. As in any point of time, each running
system has a finite set of existing Person objects, this quantification is
always finite. Therefore, OCL does not possess the power of first-
order logic, but of a propositional logic only and the OCL constraints
can be checked at runtime.

Any usage of universal and existential quantification ranges over
finite sets only. - With one exception: in UML 1.3 both quantifiers
may be used over basic datatypes like Integer or String. The UML 1.3
specification does not define exactly what this really means. We basi-
cally have two possible interpretations at hand. In one interpretation,
the following constraint
Integer.allInstances->forall(x | x <> 5)
is not necessarily false. In one interpretation the expression
Integer.allinstances corresponds to all existing integers in a
system snapshot. This set is finite and the constraint above simply
states that integer 5 is not assigned to any variable of the system at all.
In the other interpretation, Integer.allinstances is the actual set of all
integers, and the above statement wrong. This means we have infinite
quantifications at hand to describe properties, but of course, such quan-
tification normally cannot be executed.

Even if we assume that OCL is completely executable, we still
have the problem that describing a constraint does not tell us how to
establish it. For example, if we describe a post-condition or an invari-
ant with OCL, there is no automatic way to generate code from it that
is capable of actually establishing the post-condition or the invariant.

Because of this big difference between checking a constraint and
establishing it, UML 2.0 will probably be extended by an action lan-
guage. So long, it is not quite clear what the action language will look
like, but its purpose will be to describe behavior. We expect the action
language to be basically executable and to allow us to describe the
actions an object performs when receiving a stimulus.

Activity Diagrams
Apart from the discussed kinds of diagrams, UML contains a

number of additional diagrams, which play a less important role in the
UML of today. One of them is the newly introduced activity diagram.
Even though activity diagrams are presented as a specialization of
StateCharts, they actually extend the properties of StateCharts allow-
ing us to describe several concurrent threads of execution. Depending
on their actual semantics, activity diagrams are a mixture between
dataflow diagrams, which have already been present in OMT [19], and
Petri-Nets [18]. For both, dataflow and Petri-Nets, exist tools to
execute them, so we can expect with high certainty that activity
diagrams will also be executable.

Sequence Diagrams, Collaborations
The diagrams discussed so far, are capable of describing complete

sets of possible structures or possible behaviors. In contrast, sequence
diagrams and collaboration diagrams describe the system on an in-
stance level. Both diagrams show one possible, exemplaric behavior.
This is perfect to model stories and to discuss them with users, but
having a finite set of sequence diagrams available, we cannot generate
complete code out of it. Regarding code generation, this flaw has been
addressed by extending sequence diagrams with techniques for describ-
ing alternatives, iteration and repetition. Some of these techniques are
already available in UML sequence diagrams. Deeper considerations

700 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

have been published in [14] and partly included in the Message Se-
quence Diagrams (MSC) as standardized by ITU [11]. If we extend
further sequence diagrams, i.e. by concepts like actions in the activity
bars, then we will probably have sequence diagrams that allow to gen-
erate complete code. However, these techniques make sequence dia-
grams more complicated, and we have plenty other description tech-
niques at hand which allow code-generation.

The exemplaric nature of sequence diagrams on the other hand,
offers an opportunity to specify test cases. A sequence diagram can be
interpreted as a test-driver, sending a sequence of stimuli to an initially
created object structure. The sequence diagram is furthermore capable
to describe the responses of the object structure under test as well as
internal flow of messages. Thus it can be expected that sequence dia-
grams will be used for coding test-drivers and expected message flows.

UML APPLIED IN THE EXTREME
MODELING APPROACH

XP pretends to use a number of common sense principles and
practices to rather extreme levels. In this section, we are going to
examine these practices in detail and see how our vision of UML
supports them. We refer to the best practices given in [1]:
� XP wants an early, concrete and continuing feedback through short

development cycles. This is even more true when we have a more
compact modeling language at hand, which allows us to describe
more effectively the properties of the system. We achieve even
shorter development cycles than an ordinary programming lan-
guage could enable.

� XP relies on an incremental programming approach which allows
to come up quickly with an overall plan that is continuously evolved
during a project�s life. Having a notation such as class diagrams at
hand, the incremental planning is even easier than only working
with a programming language. Furthermore, evolution of a system
is also strongly supported as refactoring techniques [16], [4]
strongly rely on class diagrams. So both incremental planning and
evolution are even better supported by UML than by some ordi-
nary programming languages.

� XP relies on its ability to flexibly schedule the implementation of
new functionality directly responding to enhancing or changing busi-
ness needs. This is a methodical issue, there is no reason why the use
of UML as programming language should not better support this
than the current programming languages.

� XP strongly relies on automated tests written by programmers and
customers to ensure and monitor the progress of development in order
to catch the facts as early as possible. Using an ordinary programming
language, the program code and the testing code both have to be
written in the same language. This is feasible, of course, but having
specialized notations for description of the system and of its tests
makes it even easier. As discussed in the previous section, we found a
number of description techniques, i.e. class diagrams, StateCharts and
a subset of OCL, to be well-suited for high level executable modeling.
Because of their exemplaric nature, sequence, collaboration, and ob-
ject diagrams are especially suited to describe tests on an instance
level. For example, we can use object diagrams to describe a start
situation for a method call and the structural part of its post-condi-
tion, namely, the final situation for that method call. The interactions
happening during this method can be described by a sequence diagram
or a collaboration. These kinds of diagrams are specifically suited to
describe tests and test situations, tools could graphically show where a
test situation has been violated. This is easy to grasp when the test is
broken. XP expects tests not only to be written by programmers but
also by customers. Some customers can describe tests in diagrams more
easily than describe tests as code. Needless to say, we need a good set of
tools supporting diagrams that we are going to use in the XP approach,
not only for the purpose of testing.

� XP relies on communication, tests and source code without further
documentation to communicate system structure and intent. Of
course, it is easier to discuss on precise and abstract pictures than
relying only on textual source code. If the source code is partly

replaced by UML diagrams, then documentation and code again
coincide without having much redundancy - a goal that XP tries to
achieve. The more sophisticated and higher level concepts a pro-
gramming language has, the more compact the notation is, the easier
it is to grasp the system structure and intent. We expect from UML
as a programming language to be of high advantage regarding the
understanding of and the communication of a system.

� XP aims at evolutionary design as long as the system is in use. This
is a highly critical point because systems that are unstable tend to
change their functionality as well. Unfortunately tests cannot cap-
ture the possible behavior totally. Thus, it may happen that certain
subtle changes of system functionality are not detected by tests. Of
course, this is still possible with the extreme modeling approach, but
we hope that using a more compact, higher-level language better
assists maintenance and evolution of an existing system than a lower-
level programming language does. In particular, the program parts to
be adapted in a task might be less distributed in the code and therefore
easier to grasp and overview.

� In XP the skills of programmers play an important role. XP tries to
match short-term instincts of programmers with long-term interests
of the project. Using an extreme modeling approach means that the
programmers need some skills and specially some interest in high-
level modeling with UML instead of using an ordinary object-ori-
ented or structural programming language. As we still do not have
sufficiently powerful tools to support UML as a high-programming
language, we cannot have programmers with that skill. We expect
that as soon as such tools exist, a great deal of programmers is
interested enough to learn the skills necessary to use them. But this is
a kind of paradigm shift which is equally difficult or even more difficult
than the shift from structural programming like using programming
language C to an object-oriented programming language like C++.

In summary, had we a sufficient, useful tool support for a subset of
UML as a high-level programming language, the extreme modeling
approach as discussed above would be a natural evolution of Extreme
Programming process as introduced in [1]. It would have advantages
over XP in many common sense principles and practices that XP
already relies on today.

PROBLEMS WITH EXECUTABLE UML
Executing a specification or a specified model has both benefits

and drawbacks. As discussed some benefits are the early feedback for
developer, experiencing his model�s actual behavior. Another impor-
tant advantage is the fact the earlier you get the code running, the
more market you have. Certainly, generating code out of a model gives
distinctive time and market advantage. On the other hand such an
approach suffers from serious drawbacks.

Efficient Specifications
Known from the early efforts when defining executable specifi-

cation languages, the modeler tends to focus not only on the proper-
ties he is modeling, but also on efficiency of the execution. It is hard
enough to specify properties concisely and accurately, and it becomes
even harder if we are simultaneously concerned with efficiency. Such
experience has been made with algebraic specification languages how-
ever, and it is not clear whether these considerations also hold for
modern diagrammatic languages like UML.

Executable specification of functionality such as sorting are harder
to read and understand than abstract and compact property specifications.
As OCL is conceptually similar to algebraic specification languages, at
least OCL-specifications will suffer from efficiency considerations. On
the other hand this problem will be less dramatic for other UML nota-
tions, as those mainly deal with structure (class diagrams), or are effi-
ciently executable by their nature (StateCharts).

The Problem of Over-Specification
Our examination has shown that a large sub-language of UML can

be executable. The question remains: shall UML be an executable,
high-level programming language?

Issues and Trends of IT Management in Contemporary Organizations 701

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Today, UML based tools often force developers to specify details
unknown at the moment, or details they wanted to be left open. This
is well-known as the problem of over-specification and will surely
become worse if the tools are going to head towards being high-level
programming language compilers. Looking at SDL, which had a similar
fate starting of as specification language in the telecommunication
area, ending up as a high-level programming language, we will probably
witness UML making a shift from a property-description language to
an executable language, used mainly for programming.

Repeating earlier arguments, it is doubtlessly useful to have an
immediate simulation of your model at hand; nevertheless during mod-
eling, especially architectural or requirements modeling, the possibil-
ity to under-specify unwanted or unavailable properties is highly im-
portant. Therefore, it is useful in general to have both an executable
sub-language of UML and a highly non-executable sub-language that
allows us to specify system properties declaratively. High-level UML
specifications must then be transformed into low-level detailed ex-
ecutable models by adding details and refactoring the models. For ex-
ample, whereas we need for execution purposes mostly one StateChart
for each class during the specification, it might be of great use to have
several abstract StateCharts that describe parts of behavior of a class
from different points of view, and that are merged into one, more
detailed StateChart during the development process. As we know, this
kind of merging cannot be done automatically, it needs methodical
assistance beyond today�s tools that mainly allow drawing diagrams
and generate code out of them.

Focus on the Target Language
When using code generators that map UML to a target language,

the semantics of the target language as well as its notational capabili-
ties tend to become visible on the UML level. For example, missing
multiple inheritance in Java may restrict executable UML to single
inheritance as well. Furthermore, the language internal concurrency
concept, message passing or exception handling may impose a certain
dialect of executable UML. This proliferates UML dialects as seman-
tically incompatible. In particular it will not (easily) be possible to
transfer UML models from one target language to another.

UML in the Early Phases
Executable UML will be useful for a number of projects. However

in many other software development approaches, there are early phases
with explicit requirements analysis, specification of the system func-
tionality and development of an explicit architecture of the system.
Executable UML will have a number of deficiencies to describe this
artifacts. We already mentioned the problem of over-specification and
the dependency on the target language. Furthermore, an executable
UML will not cover the full UML 1.3 as it is today. For example, we do
not expect use cases to become an executable notation, even though
there are attempts to generate code from them.

As a consequence, executable UML should be a subset of a larger
UML that is capable to assist the developers in the early phases. This
extended version of UML relaxes certain restrictions of executable
UML, uses more diagrams, and offers a number of high-level concepts
within the mentioned diagrams, that cannot be executed.

CONCLUDING REMARKS
This paper discusses how and whether to integrate modeling tech-

niques that a language like the UML offers in an executable form with
the Extreme Programming approach. We have called the result �ex-
ecutable modeling� based on the idea to replace ordinary programming
by high-level modeling.

The basic idea of executable modeling is to replace the program-
ming language on which XP heavily relies on by a high-level execut-
able modeling language. We examined the UML potential for this
approach and found that it would support most of our needs. However,
today�s tool support is poor and insufficient. As long as tools do not
fully support our needs, the vision in this paper will only remain a
vision. However, looking at present situation of UML tools, it seems
rather likely that the fate of the Unified Modeling Language will be

similar to the fate of SDL [10], which also started as high-level de-
scription language in telecommunication area and ended up as a high-
level programming language.

Although the development of an executable UML-version has a
number of advantages, there are also a number of drawbacks. Most
critically, it has to be made clear to software developers, that in the
early phases a non-executable UML should be used. There should be no
emphasis on efficiency or completeness of the models. Instead the
models should be abstract and focused on the information they are
intended to describe.

To conclude, there is a necessity for a non-executable as well as
an executable version in the UML language family that both will co-
exist and be used where appropriate.

ACKNOWLEDGEMENTS
The author wishes to thank Kent Beck and Jutta Eckstein for

fruitful discussions on XP, also Wolfgang Schwerin for his comments.
This work was partially supported by the Bayerische Forschungsstiftung
under the FORSOFT research consortium and the Bayerisches
Staatsministerium für Wissenschaft, Forschung und Kunst under the
Habilitation-Förderpreis program.

REFERENCES
[1] K. Beck . Extreme Programming explained, Addison-Wesley. 1999.
[2] G. Booch, J. Rumbaugh., I. Jacobson. The Unified Modeling Lan-

guage User Guide. Addison-Wesley. 1998.
[3] D. D�Souza, A. C. Wills. Objects, Components and Frameworks with

UML. The Catalysis Approach. Addison-Wesley. 1998.
[4] M. Fowler. Refactoring. Addison-Wesley. 1999.
[5] D. Harel: Statecharts: A Visual Formalism for Complex Systems.

Science of Computer Programming 8, 1987, 231 -274.
[6] D. Harel. On the Behavior of Complex Object-Oriented Systems.

Invited Talk in: R. France, B. Rumpe (eds.): <<UML>>�99 - Pro-
ceedings. Springer Verlag. LNCS 1723. 1999.

[7] B. Henderson-Sellers, A. Simons, H. Younessi. The OPEN Toolbox
of Techniques. Addison-Wesley. 1998.

[8] F.Huber, B. Schätz, A. Schmidt, K. Spies. AutoFocus-A Tool for
Distributed Systems Specification. IN: Proceedings of FTRTFT�96,
Formal Techniques in Real-Time and Fault-Tolerant Systems, p.
467-470. Springer Verlag. LNCS 1135. 1996.

[9] P. Hudak et al. Report on the Programming Language HASKELL.
Yale University, CS Dept. Technical Report. YALEU/DCS/RR-777.
1990.

[10] ITU-T. Recommendation Z.100, Specification and Description
Language (SDL). ITU-T, Geneva. 1993.

[11] ITU-T. Message Sequence Chart (MSC). Z.120:96. ITU-T, Geneva.
1996.

[12] I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Devel-
opment Process. Addison-Wesley. 1999.

[13] M. P. Jones. An Introduction to Gofer. 1993.
[14] I. Krüger. Towards the Methodical Usage of Message Sequence

Charts. In: Formale Beschrei-bungstechniken für verteilte Systeme.
FBT99. K. Spies and B. Schätz (eds.). 9. GI/ITG Fachgespräch, p.
123-134. Herbert Utz Verlag. 1999.

[15] OMG - Object Management Group. Unified Modeling Language
Specification. V1.3. 1999.

[16] W. Opdyke, R. Johnson. Creating Abstract Superclasses by
Refactoring. Technical Report. Dept. of Computer Science, Univer-
sity of Illinois and AT&T Bell Laboratories. 1993.

[17] L. Paulson. ML for the Working Programmer. Cambridge Univer-
sity Press. 1991.

[18] W. Reisig. Petri-Nets - An Introduction. EATCS Monograph, No.
4. Springer Verlag, 1985.

[19] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen.
Object-Oriented Modeling and Design. Prentice Hall. 1994.

[20] B. Selic, G. Gullekson, P. Ward. Real-Time Object-Oriented Model-
ing. John Wiley & Sons. 1994.

[21] J. Warmer, A. Kleppe. The Object Constraint Language. Addison-
Wesley. 1998.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/executable-modeling-uml/31882

Related Content

Feature Engineering Techniques to Improve Identification Accuracy for Offline Signature Case-

Bases
Shisna Sanyal, Anindta Desarkar, Uttam Kumar Dasand Chitrita Chaudhuri (2021). International Journal of

Rough Sets and Data Analysis (pp. 1-19).

www.irma-international.org/article/feature-engineering-techniques-to-improve-identification-accuracy-for-offline-

signature-case-bases/273727

Artificial Intelligence and Investing
Roy Radaand Hayden Wimmer (2015). Encyclopedia of Information Science and Technology, Third Edition

(pp. 85-93).

www.irma-international.org/chapter/artificial-intelligence-and-investing/112318

A Systematic Review on Author Identification Methods
Sunil Digamberrao Kaleand Rajesh Shardanand Prasad (2017). International Journal of Rough Sets and

Data Analysis (pp. 81-91).

www.irma-international.org/article/a-systematic-review-on-author-identification-methods/178164

Novel Algorithmic Approach to Deciphering Rovash Inscriptions
Loránd Lehel Tóth, Raymond Pardedeand Gábor Hosszú (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 7222-7233).

www.irma-international.org/chapter/novel-algorithmic-approach-to-deciphering-rovash-inscriptions/112420

Business Continuity Management in Data Center Environments
Holmes E. Millerand Kurt J. Engemann (2019). International Journal of Information Technologies and

Systems Approach (pp. 52-72).

www.irma-international.org/article/business-continuity-management-in-data-center-environments/218858

http://www.igi-global.com/proceeding-paper/executable-modeling-uml/31882
http://www.irma-international.org/article/feature-engineering-techniques-to-improve-identification-accuracy-for-offline-signature-case-bases/273727
http://www.irma-international.org/article/feature-engineering-techniques-to-improve-identification-accuracy-for-offline-signature-case-bases/273727
http://www.irma-international.org/chapter/artificial-intelligence-and-investing/112318
http://www.irma-international.org/article/a-systematic-review-on-author-identification-methods/178164
http://www.irma-international.org/chapter/novel-algorithmic-approach-to-deciphering-rovash-inscriptions/112420
http://www.irma-international.org/article/business-continuity-management-in-data-center-environments/218858

