
Issues and Trends of IT Management in Contemporary Organizations 679

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ABSTRACT
Today, modeling business processes and modeling software is done using different notations that are designed to fit to the special needs
of the respective tasks. However, this fact results in a painful methodological gap between business models and software models, which
is hard to bridge. This problem becomes even more painful if we try to build software to support certain business models as a smooth
transition between the employed notations is mostly not supported or � due to methodological problems � impossible. In order to allow
for a smoother transition we propose using Unified Modeling Language (UML) activity diagrams in both worlds. We show how this is done
by deriving the transition of important (business) process patterns from Event-driven Process Chains (EPC) to UML activity diagrams.

UML Design Patterns for Business Processes
Peter Rittgen

Information Systems Group II, Technical University Darmstadt, Germany
Tel: +49(6151)16-4416, Fax: +49(6151)16-5162, rittgen@bwl.tu-darmstadt.de

Klaus Turowski
University of Augsburg, Chair of Business Information SYstems, Germany

Tel: +49(821)598-4431, Fax: +49(821)598-4432, klaus.turowski@wisco.uni-augsburg.de

MOTIVATION
When analyzing a company for potentials of information sys-

tems support, a major task consists in identifying the relevant business
processes and describing them in a suitable modeling language. Many
such languages have been developed over the years such as IDEF (Inte-
grated DEFinition, (Bruce, 1992)), Role Activity Diagrams (Ould,
1995) and ARIS/EPC (ARchitecture of integrated Information Sys-
tems / Event-driven Process Chain, (Scheer, 1999)) to name but a few.

They share a common characteristic in that they are not equipped
to support the design of software. The Unified Modeling Language
(UML), cp. e.g. (Rational Software et al., 1997), on the other hand,
does provide the features pertinent to software engineering but it is
less qualified for domain-oriented models. In practice this leads to a
separation of concerns but also to heterogeneous notation usage: do-
main experts using business languages, and software engineers using
UML notations. This entails an undesirable gap between domain and
software models representing a source of mistakes that are hard to
correct.

Hence we suggest a way of using only UML activity diagrams in both
worlds taking a closer look at typical business processes modeled as EPCs
and identifying recurring patterns which we then translate into UML. We
show that the resulting UML patterns are suitable for designing processes
not only in the software but also in the business domain.

SEMANTICS OF UML ACTIVITY
DIAGRAMS

If we intend to express typical business process patterns as activ-
ity diagrams we have to go into the precise meaning of these diagrams
first. Activity diagrams are defined in (OMG, 2000) as a variation of
state machines where each state represents the performance of an
activity. It is drawn as a rectangle with rounded vertical lines. The state
contains a do activity and optionally an entry and/or an exit action.
Entry and exit actions are performed on entering or leaving the state
respectively. Their execution is considered to be instantaneous. The
do activity is performed while being in the state. It can take any
amount of time. Upon termination of this activity the state is left.
Figure 1 shows a generic activity state together with its semantics in
Petri net notation. A Petri net is a bipartite graph of places (circles)
and transitions (squares) where a transition can fire if all incoming
places are occupied by tokens. Upon firing a token is removed from
each incoming place and thereafter one token is put on each outgoing
place. See (Peterson, 1981) for a detailed treatment of Petri nets. In
the Petri net of figure 1 the entry action is performed (on entering the
state) and a token put on the place. While the activity is performed
the token remains on the place. Upon its termination (which coincides
with performing the exit action) the token is removed.

If we would like to express non-sequential behaviour there are
two different ways of splitting the path of execution: branching into
alternative paths and forking into parallel paths. The branch is simply
denoted by more than one arrow leaving a state (see figure 2). A guard
should be specified to determine which path is selected. A guard is a
Boolean condition written in square brackets. If it evaluates to true the
corresponding path is chosen. An else guard can be specified which
holds if all other guards are false. It should in fact be present if such a
situation can arise to prevent the process from blocking. Exactly one
path is chosen so the branch corresponds to the exclusive OR (XOR)
connector of EPCs (see section 3.1). If more than one guard is true
one of the associated paths is selected arbitrarily. To avoid misinter-
pretation in this case it is recommended to cascade the decisions in the
form of a binary tree as shown in figure 3.

Figure 1: Activity state (notation and semantics)

Figure 2: Guarded branch (notation and semantics)

Figure 3: Cascaded branch

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4278
IDEA GROUP PUBLISHING

680 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

The notational element for cascading guards is the diamond shape.
It has no semantics of its own and only serves as an anchor point for
splitting a path. The design in figure 3 ensures that condition A is
given preference if both A and B are true.

The second way of splitting up the execution is the fork. It is
denoted by a bar (see figure 4). If it is unguarded it simply refers to the
parallel, independent execution of both paths (called thread 1 and
thread 2). In this case it corresponds to the AND connector of EPCs.
The join of the parallel paths is synchronous, i.e. it waits for the
completion of both paths. If a path is guarded and the guard is false it
is neither taken nor waited for. A fork where all paths are guarded
corresponds to the (inclusive) OR connector of EPCs as arbitrarily
many paths can be taken. The rules governing activity diagrams de-
mand that guarded threads have to be well-nested, i.e. jumps into or out
of such a thread are not allowed except for synchronizing between
threads. Please observe that this restriction is problematic in the case
of business process modeling as it drastically limits the number of valid
models. A detailed discussion of this problem in the context of EPCs
can be found in (Rittgen, 2001).

Figure 4: Guard fork (notation and semantics)

TRANSLATING PROCESS PATTERNS INTO
ACTIVITY DIAGRAMS

Typical Patterns in Business Processes
Having a strong background in business process reengineering

projects, we observed some basic process patterns that occurred in
most business processes (and that are as well documented in literature,
e.g. (Rosemann, 1996), (Becker & Schütte, 1996)). In the following,
we discuss the most important ones. We use EPCs to explain each of
the process patterns. In doing so we employ a notation that is often
used in typical business process reengineering projects in many Euro-
pean countries.

Pattern 1: Dissection of Events
By definition, each function of an EPC is triggered by (at least)

one event. E.g. the function Process customer order in figure 5 is
triggered by an event called Customer order arrived. A situation like
this (business function triggered by a single event) is typical for busi-
ness process models in early stages. Later, as the underlying business
processes become more transparent for the people who are in charge
of modelling, the model often becomes more detailed, e.g. by subdivid-
ing the single start event into different starting events.

In figure 5 we find such a pattern. In order to express that a
business function may be triggered by different starting events, we join
the new (detailed) starting events, which together replace the old
starting event, by a logical connector, e.g. inclusive or exclusive dis-
junction.

Pattern 2: Sequential Events
In EPCs events and functions alternate. This may lead to prob-

lems if events are sequentially ordered and need to occur in conjunc-
tion to trigger a specific business function. We give such an example in
figure 6. In an EPC we can only express that both events together

Figure 5: Dissection of events

Figure 6: Sequential events

trigger the recording of the arrived goods but not the order in which
the events occur i.e. that the order is submitted first and then the goods
arrive.

Due to length restrictions we omit the remaining patterns.

UML Activity Diagram Equivalents of the Patterns
In section 3.1 we identified a number of important patterns that

typically arise when we model business processes. In many re-engi-
neering projects we managed to acquire a deeper understanding of how
certain patterns are meant to be understood in the case of EPCs. If we
put this information together with the precise semantics of the UML
activity diagrams as defined in (OMG, 2000) and set forth in section 2,
we arrive at the UML patterns for business processes outlined in this
section. We thereby show how process patterns that frequently occur
in many business scenarios and which in most cases are given in a semi-
formal way can be transformed into a rigorous representation that
facilitates the development of software.

Figure 7 shows the UML pattern for the dissection of events.
�Process customer order� becomes an activity in an activity state.
Events in activity diagrams are represented as labels on the corre-
sponding transition. This implies that the event triggers the transition
from the preceding to the succeeding state. The detailed events in the
EPC pattern of figure 5 are merged by an inclusive OR connector. As
mentioned in section 2 it is equivalent to a guarded fork. Contrary to
an EPC where multiple starting events are allowed, an activity diagram
always has exactly one entry point, the initial state drawn as a full
black circle. This means that the single entry path has to be split first
into three parallel threads, one for each channel used for transmitting
an order. Parallel threads are required because we want to allow that the
same order is sent over more than one channel, e.g. as a phone call
accompanied by a fax. The guards ensure that the function �process
customer order� only waits for the channels that are actually used.

Issues and Trends of IT Management in Contemporary Organizations 681

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Figure 7: Dissection of events in UML

The rules of EPCs require processes and events to alternate
strictly: no two events may follow each other immediately. This pre-
vents us from expressing a situation where a process is triggered by two
consecutive events in a natural way. In activity diagrams there is no
such restriction. As a consequence we simply insert a pseudo-state
between the events (see figure 8). In this way we can specify that both
events are required for the execution of the process and also the order
in which they occur.

REFERENCES
Becker, J., & Schütte, R. (1996). Handelsinformationssysteme. Landsberg.
Bruce, T. A. (1992). Designing quality databases with IDEF1X infor-

mation models. New York: Dorset House.
Keller, G., & Teufel, T. (1997). SAP R/3 prozeßorientiert anwenden:

iteratives Prozeß-Prototyping zur Bildung von Wertschöpfungsketten.
(2. ed.). Bonn: Addison-Wesley-Longman.

OMG (Ed.). (2000). OMG Unified Modeling Language Specification:
Version 1.3, March 2000. Needham: OMG.

Ould, M. (1995). Business processes: modeling and analysis for re-
engineering and improvement. Chichester: John Wiley and Sons.

Peterson, J. L. (1981). Petri net theory and the modeling of systems.
Englewood Cliffs: Prentice-Hall.

Rational Software, Microsoft, Hewlett-Packard, Oracle,
Sterling Software, MCI Systemhouse, Unisys, ICON Computing,
IntelliCorp, i-Logix, IBM, ObjecTime, Platinum Technology, Ptech,
Taskon, Reich Technologies, & Softeam. (1997). UML Notation
Guide: Version 1.1, 1 September 1997. Available: http://
www.rational.com/uml [1999, 04-17].

Figure 8: Sequential events in UML

Rittgen, P. (2001). E-Commerce Software: From Analysis to Design. In:
Gangopadhyay, Aryya: Managing Business with Electronic Com-
merce: Issues and Trends. Hershey, PA: Idea Group, 2001. In A.
Gangopadhyay (Ed.), Managing Business with Electronic Commerce:
Issues and Trends (pp. 17-36). Hershey: Idea Group.

Rosemann, M. (1996). Komplexitätsmanagement in Prozeßmodellen:
Methodenspezifische Gestaltungsempfehlungen für die
Informationsmodellierung. Wiesbaden: Gabler.

Scheer, A.-W. (1999). ARIS - Business Process Modeling. (2 ed.). Ber-
lin: Springer.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/uml-design-patterns-business-

processes/31878

Related Content

Computer Network Information Security and Protection Strategy Based on Big Data Environment
Min Jin (2023). International Journal of Information Technologies and Systems Approach (pp. 1-14).

www.irma-international.org/article/computer-network-information-security-and-protection-strategy-based-on-big-data-

environment/319722

The Growing Impact of ICT on Development in Africa
Sherif H. Kamel (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 7223-

7233).

www.irma-international.org/chapter/the-growing-impact-of-ict-on-development-in-africa/184419

Preventative Actions for Enhancing Online Protection and Privacy
Steven Furnell, Rossouw von Solmsand Andy Phippen (2011). International Journal of Information

Technologies and Systems Approach (pp. 1-11).

www.irma-international.org/article/preventative-actions-enhancing-online-protection/55800

From Stories to Histories in Making Sense of IS Failure
Darren Dalcher (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 7171-

7179).

www.irma-international.org/chapter/from-stories-to-histories-in-making-sense-of-is-failure/112415

Gamification
Lincoln C. Woodand Torsten Reiners (2015). Encyclopedia of Information Science and Technology, Third

Edition (pp. 3039-3047).

www.irma-international.org/chapter/gamification/112729

http://www.igi-global.com/proceeding-paper/uml-design-patterns-business-processes/31878
http://www.igi-global.com/proceeding-paper/uml-design-patterns-business-processes/31878
http://www.irma-international.org/article/computer-network-information-security-and-protection-strategy-based-on-big-data-environment/319722
http://www.irma-international.org/article/computer-network-information-security-and-protection-strategy-based-on-big-data-environment/319722
http://www.irma-international.org/chapter/the-growing-impact-of-ict-on-development-in-africa/184419
http://www.irma-international.org/article/preventative-actions-enhancing-online-protection/55800
http://www.irma-international.org/chapter/from-stories-to-histories-in-making-sense-of-is-failure/112415
http://www.irma-international.org/chapter/gamification/112729

