
Issues and Trends of IT Management in Contemporary Organizations 633

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ABSTRACT
During the object-oriented software development process, a variety of models of the system is built. All these models are not independent,
but they are related to each other. Elements in one model have trace dependencies to other models; they are semantically overlapping
and together represent the system as a whole.
   In this paper we classify relationships between models along three different dimensions, proposing a formal description of them. The
goal of the proposed formalization is to provide formal foundations for tools that perform intelligent analysis on models assisting
software engineers through the development process. In this direction we discuss the construction of a tool, based on the formalization,
supporting the verification of traces between requirement model and analysis models.

Dimensions in the Object Oriented
Software Development Process

Claudia Pons, Roxana Giandini, Gabriel Baum, Joe Luis Garbi and Paula Mercado
LIFIA, Laboratorio de Investigación y Formación en Informática Avanzada

Tel/Fax: 054 221 4228252, {cpons, giandini}@sol.info.unlp.edu.ar

INTRODUCTION
A software development process, e.g. The Unified Process

(Jacobson et al., 1999), is a set of activities needed to transform user�s
requirements into a software system. Modern software development
processes are iterative and incremental, they repeat over a series of
iterations making up the life cycle of a system. Each iteration takes
place over time and it consists of one pass through the requirements,
analysis, design, implementation and test activities, building a number
of different artifacts (i.e models). All these artifacts are not indepen-
dent; they are related to each other, they are semantically overlapping
and together represent the system as a whole. Elements in one artifact
have trace dependencies to other artifacts. On the other hand, due to
the incremental nature of the process, each iteration results in an
increment of artifacts built in previous iterations.

Different relationships existing between models can be organized
along the following three dimensions:
� internal dimension (artifact-dimension ).
� vertical dimension (activity -dimension )
� horizontal dimension (iteration-dimension )

The internal dimension deals with relations between sub-models
that coexists  consistently making up a more complex model. For
instance, an analysis model consists of analysis class diagram, interac-
tion diagrams, collaboration diagrams. All the artifacts within a single
model are related and have to be compatible with each other.

The vertical dimension considers relations between models be-
longing to the same iteration in different activities (e.g. a design model
realizing an analysis model).  Two related models  represent the same
information, but from different abstraction level. Both related models
also coexist and should be syntactically and semantically compatible
with each other.

The horizontal dimension considers relations between artifacts
belonging to the same activity in different iterations (e.g. a use case is
extended by another use case). In this dimension new models are built
or derived from previous models by adding new information that were
not considered before or by modifying previous information.

Figure1 illustrates the three dimensions described above. It lists
the classical activities (requirements, analysis, design, implementation
and test) in the vertical axis  and the sequence of iterations in the
horizontal axis.

Relations between models should be formally defined since the
lack of accuracy in their definition can lead to wrong model interpre-
tations and inconsistency among models.

At the present the Unified Modeling Language UML is consid-
ered the standard modeling language  for object oriented software
development process. The specification of UML constructs and their
relationships (UML, 2000)  is  semi-formal, i.e. certain parts of it are

Figure 1: Dimensions in the software development process

specified with well-defined languages while other parts are described
informally in natural language. There is an important number of theo-
retical works giving a precise description of core concepts of UML and
providing rules for analyzing their properties; see, for instance the
works of Evans  et al.(1998;1999), Kim and Carrington (1999), Breu
et al.(1997), Knapp (1999), Övergaard (1999, 2000), Pons  and Baum.
(2000). These works improve precision of syntax and semantics of
isolated UML models, without dealing with relationships between mod-
els.

In addition, Övergaard and Palmkvist (1998, 2000), Petriu and
Sun (2000) , Sendall. and Strohmeier, (2000) and Whittle et al. (2000)
focus on relationships between different UML models. Following this
direction, we classify relations between models along three different
dimensions, proposing a formal description of them. This paper re-
ports an extension of our earlier work described in Pons et al.(2000).

INTERNAL-DIMENSION RELATIONS
Every model is made up from a number of related sub-models (or

artifacts) that have to be semantically compatible obeying to several
constraints between them.

The UML specification document (UML, 2000) defines the ab-
stract syntax of UML by class diagrams and well-formedness rules
expressed in the Object Constraint Language OCL (UML, 2000). Most
of the well-formedness rules in that document are examples of con-
straints on internal-dimension relations.

After a number of revisions, the UML specification document
still contains  ambiguities and inconsistencies. We have been analyzing

This paper appears  in  Issues and Trends of Information Technology Management in Contemporary Organizations,  the proceedings  of the
Information Resources Management Association International Conference.  Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4265
IDEA GROUP PUBLISHING



634  Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

internal relationships between models in order to improve their speci-
fication, see for example (Cibran et al. 2000).

VERTICAL-DIMENSION RELATIONS
In this section we analyze vertical relations, that is to say rela-

tions between models belonging to the same iteration in different
activities. Due to space limitations we only describe relationships be-
tween the requirement phase and the analysis phase.

Creating Analysis Models from Use Cases
A use case in the use-case model is realized by a collaboration

within the analysis model that describes how a use case is realized and
performed in terms of analysis classes and their interacting analysis
objects.  A use case realization has class diagrams that depict its par-
ticipating analysis classes, and interaction diagrams that depict the
realization  of a particular flow or scenario of the use case in terms of
analysis object interactions. Figure 2 shows the relation between a use
case and its realization.

Use-case realization 

<<trace>> 

Use-case Model 

Analysis 
Model 

Use Case 

Figure 2: Use case realization

Example: We present the model of a system to maintain a Li-
brary. The members of the library share a collection of books. The
system should allow them to borrow books, to return them or to
renovate a loan. When returning or when renovating the loan of a
book, the member should pay a fee. In the event this fee is not paid,
the member won�t be able to borrow a new book or to renovate a loan.
Use case renewLoan specifies the functionality of the system, for the
renew of a loan.

Use cases can be specified in a number of ways. Generally natural
language structured as a conversation between user and system is used,
see (Jacobson et al., 1993). The conversation shows the request of a
user and the corresponding answers of the system, at a high level of
abstraction. The following paragraph shows a conversation between
an actor (a member of the library) and the system. The conversation
considers the normal action sequence and also alternative sequences
(e.g. the case in that the book is not available):

User Actions: User-asks-for-renew-loan
System Answers: alidate-member-id, validate-book-availabil-

ity, ask-for-debt, renew-loan
Alternatives:. Member-identification-is-not-valid, then reject-

loan. Book-is-not-available, then reject-loan. Member-has-debt, then
ask-for-payment, then renew-loan.

In the UML a UseCase is a kind of Classifier having a collection
of operations (with its corresponding methods). Operations describe
messages that instances of the use case can receive. Methods describe
the implementation of operations in terms of action sequences that
are executed by the instances of the use case.

Let  uc be the use case defined above. The definition of uc (using
the standard notation and metamodel of UML (2000) is as follows:
uc.operations = <op1>
op1.name=ask for renew loan

op1.method.body= {<validate-member-d, validate-book-availability, ask-
for-debt, renew-loan>,

< validate-member-id, reject -oan>, < validate-member-id, validate-book-
availability, reject-loan>,

< validate-member-id, validate-book-availability, ask-for-debt, ask-for-
payment, renew-loan >}

In general we abbreviate op.method.body by op.actionSequence.
The body of a method is a procedure expression specifying a possible
implementation of an operation. The definition of procedure expres-
sions is out of the scope of UML, here we interpret a procedure
expression as a  set of action sequences.

The Realization of the Use Case:
Figure 3 shows a Collaboration model including a set of Classifier

Roles and their connections, and one of the iteration diagrams speci-
fying the message flows between objects playing the roles in the col-
laboration. These diagrams are expected to realize the use case above;
this fact will be formally proved in next section.

Figure 3: A collaboration realizing the use case

Formalizing the realization relation between
Use Cases and Collaborations

Lets define a set of concepts that are necessary in order to for-
malize the relations between use cases and collaborations.

Def. 1: let (MS,³)  be the  poset of messages in an interaction
(messages are partially ordered by the predecessor/successor relation).
The set of linearizations on MS is defined as the set of sequences of
messages in MS, and it is denoted as lin(MS,³).

Def. 2: maxLin(MS,³) is the set of maximal linearizations on MS.
It is obtained from lin(MS,³) by dropping every sequence that is con-
tained in another sequence in the set.

Def. 3 : let S be a set of sequences of actions.  external(S) denotes
the sequences of S obtained omitting all the actions that are not visible
externally.

Def. 4: a conformance declaration is a correspondence between
action names in a use case and action names in a collaboration. Each
name in the use case is mapped to (a name of) an action in the
collaboration. This mapping provides more flexibility in the develop-
ment process allowing analysts to modify the name of the actions as
the process evolves.

For example, the following is a conformance declaration between
the Use Case  and the Collaboration above:



Issues and Trends of IT Management in Contemporary Organizations 635

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

δ : Actions in the UC→Actions in the collaboration
ask-for-renew-loan → renewLoan(id,b)
validate-member-id → requestIdValidation(id)
validate-book-av. → requestBookAvailability(b)
ask-for-debt → askForDebt(ret d)
ask-for-payment→ payFee(d)
renew-loan → renewLoan
reject-loan → reject

At this point we can define the realization relation between a
Collaboration C and a Use Case UC. A Use Case is realized by a Col-
laboration if the Classifiers Roles in the Collaboration jointly cooper-
ate to perform the behavior specified by the Use Case, but not more.
In the case that the Collaboration includes more behavior than the one
specified by the Use Case, the Use Case would be only a partial speci-
fication of the behavior described by the Collaboration. On the other
hand, a use cases specifies actions that are visible from outside the
system, but do not specify internal actions, such as creation and de-
struction of instances, communication between internal instances, etc.
(for example, recordPayment and recordLoan are internal actions)

Definition 5: A collaboration C is a realization of a Use Case UC
according to the conformance declaration δ , denoted C≥δ  UC,  if both
of the following hold:
a- ∀uo∈UC.operation.∀ut∈uo.actionSequence.∃int∈C.interaction.
∃ms∈lin(int.message). (δ(uo.name)=act.operation.name  ∧
δ +(ut)=external(ms.tail.actions) )

b- ∀int(C.interaction.∀ms(maxLin(int.message).∃uo∈UC.operation.
∃ut∈uo.actionSequence.
( δ(uo.name) = act.operation.name ∧  δ +(ut)=external(ms.tail.actions)

Where:
act = (ms.head).action,
ms.head is the first element in the sequence ms,
ms.tail is the subsequence obtained  from ms by dropping the first

        element,
ms.actions is an abbreviation for ms.collect (e.action)
δ +(ut)= ut.collect (δ  (a) )
Definition above states that every action sequence specified by the

Use Case must have a corresponding action sequence in the Collaboration,
that is equal to it (except for internal actions), and vice versa.

HORIZONTAL-DIMENSION RELATIONS
In this section we analyze horizontal relations, that is to say

relations between models belonging to the same activity in different
iterations.

Evolving the Use-Case Model
A use case model may be evolved in different ways. The UML

considers at least two forms of evolution: the extends and the generali-
zation relationships between use cases. In this paper we only take into
consideration the former.

The extend relation represents  the enrichment of a use case by
the definition of additional actions. An extend relationship from use
case A to use case B indicates that an instance of use case B may
include (constrained by specific conditions specified in the extension)
the behavior specified by A.

The definition of extend includes both a condition for the extension
and a reference to an extension point in the target use case, that is, a
position in the use case where additions may be made. Once  an instance of
a (target) use case reaches an extension point to which  an extend rela-
tionship is referring, the condition of the relationship is evaluated. If the
condition is fulfilled, the sequence obeyed by the use-case instance is
extended to include the sequence of the extending use case.

Evolving the Collaboration Model
The UML does not consider special dependency relationships

between Collaboration. However since Collaborations realize Use Cases,

it is important to reflect the relationships between Use Cases (e.g.
extend relationships) on its realizing Collaborations. As well as Use
Cases are extended by adding actions (defined in other Use Case),
Collaborations can be extended with additional message sequences speci-
fied in another Collaboration.

For further details about the extension relationship between Col-
laborations based on the corresponding extension relationship between
Use Cases, readers are referred to (Giandini et al., 2000).

TOOL SUPPORT: THE DEPENDENCY
RELATIONS CHECKER

Tracing elements between different models is not an easy task.
An essential element to perform this activity is support offered by
CASE tools. In particular, it is useful to deal with formal mechanisms
that contribute to a precise and rigorous verification of the relation-
ship.

We built a tool named DRC (Dependency Relations Checker).
DRC verifies the relation between the elements in the use case model
and the analysis model. The DRC is based on the formal foundation for
dependency relationships.

The main idea of the Dependency Relations Checker is to pro-
vide a friendly approach to formal verification of the dependency
relationships that exist between different UML models.

In particular,  the current version of DRC is focused on verifying
if a given use case realization actually corresponds to a specific use
case diagram. In other words, DRC verifies if a use case realization
represents the behavior established by a use case diagram.

DRC takes place in the early phases of the development process,
between the requirements phase and the analysis phase. It helps devel-
opers to verify consistency among the two phases, with the benefit of
the formal background.

The Main Components of the Dependency Relations Checker
DRC does not provide a complete environment for the specifica-

tion of models. This functionality is provided by the support of CASE
tools, like Rational Rose. Our tool can be extended to allow the con-
struction of UML models. However, the current approach provides a
flexible working mechanism and allows an easy insertion of our tool in
the development process, since it deals with the Rational Rose, a
highly accepted tool in industry.

Clearly, we have two distinguished layers: the specification layer
given by Rational Rose, that represents the DRC input  and the verifi-
cation layer, that performs checking activities that generate the final
result. In the next section, we concentrate on the verification layer.

This section describes the main components of the verification
layer. DRC was thought as a set of entities that intercollaborate to
perform the global task. Figure 4 shows this relationship.

The components are, namely: the Petal File parser, the UML
model translator, the Conversation definer, the Conformance Decla-
ration definer and the Verifier component. All these modules are coor-
dinated by a �coordinator� component and they all were implemented
in the Smalltalk environment VisualWorks version 3.0.  The role of
each component of the DRC is described below.

The Petal File Parser. The Dependency Relations Checker
takes the UML models defined with  Rational Rose/C++ Version 4.0.3.
In order to create an internal representation of the UML model that
the Verifier component understands, the Petal File Parser component
parses the content of the files generated by the Rational Rose (MDL
files) and generates a collection of objects that represents it.

The UML model translator. Once the Petal File Parser has
translated the file to an object collection, it is taken by the UML
model translator component. This component translates the object
representation of the Petal file to a simplified instance of the UML
metamodel that represents the models generated in the requirement
phase and in the analysis phase.

This component also has the responsibility of noticing any in-
consistency among diagrams definitions, for example, the absence of



636  Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

 

The Petal File  
Parser 

The UML model  
translator 

The Conversation  
definer 

The Conformance  
Declaration definer 

The Verifier  
component 

Coordinator 

Figure 4: Main architecture of the tool

some diagram, its wrong construction, errors in the Conversation or
Conformance Declaration syntax, among others.

The definition of these translation components gives a great
flexibility to the design of the tool. It makes easier the task of extend-
ing the DRC to support different kinds of file formats provided by the
great quantity of CASE tools used to specify models. In  the other
hand, it allows to remove and substitute these components by better
ones, that perform the same task faster or more precisely.

The Conversation Definer. The definition of a Conversation
is part of the construction of a Use Case Diagram. This task can be
performed in both, the Rational Rose and the Dependency Relation
Checker. In the Rational Rose, this is achieved attaching a �Note� to
the Use Case Diagram, where you must manually write the Conversa-
tion using the given syntax. The DRC also provides a graphical inter-
face that allows to create a Conversation for a given model.

The Conformance Declaration Definer. The Conformance
Declaration establishes the correspondence between the actions in the
use case and the actions in the collaboration.

The Verifier Component. The Verifier component takes as its
input the UML model translated by the UML model translator. It also
takes the Conversation and Conformance Declaration. The Verifier
component performs the verification task of determining if a set of
analysis diagrams are the realization of a use case diagram. This mod-
ule applies the mathematical formulas mentioned above on the UML
model and informs its conclusions.

It is important to say that the model can be easily extended to
support different verifier components that perform other checkings
using the same model. In this way, we can consider the tool of being an
initial schema that allows different kinds of verification over UML
models.

CONCLUDING REMARKS
Relations between software models should be formally defined

since the lack of accuracy in their definition can lead to wrong model
interpretations, inconsistency among models, inconsistent evolution
of models, etc. In this paper we classify relations between models
along three different dimensions (i.e. artifact dimension, activity di-
mension and iteration dimension), proposing a formal description of
them.

The goal of the proposed formalization is to provide formal
foundations for tools that perform intelligent operation on models.
As an example of application of the formalization we have described
the main components of the Dependency Relations Checker (DRC),
that is a case tool giving support to verification of traces between use-
case model and analysis model. This tool is very opened, due to the
clear separation between its modules. This approach allows to easily

extend or change its characteristics. This kind of tools represents an
advance over the present state of the practice for project manage-
ment.

REFERENCES
Breu,R., Hinkel,U., Hofmann,C., Klein,C., Paech,B., Rumpe,B. and

Thurner,V., Towards a formalization of the unified modeling lan-
guage. ECOOP�97 procs.,  Lecture Notes in Computer Science
vol.1241,  (1997).

Cibrán, M., Mola, V., Pons,C., Russo,W. Building a bridge between the
syntax and semantics of UML Collaborations. In ECOOP´2000
Workshop on Defining Precise Semantics for UML France, June
2000.

Evans,A., France,R., Lano,K. and Rumpe,B., Towards a core
metamodelling semantics of UML, Behavioral specifications of busi-
nesses and systems, Kluwer Academic Publishers, (1999).

Evans,A., France,R., Lano,K. and Rumpe, B., Developing the UML as a
formal modeling notation, UML�98 Conference, Lecture Notes in
Computer Science  1618, Springer-Verlag, (1998).

Giandini,R, Pons, C and Baum,G.. An algebra for Use Cases in the Uni-
fied Modeling Language. OOPSLA´00 Workshop on Behavioral Se-
mantics, Minneapolis, USA, October 2000.

Jacobson, I., Christerson, M., Jonsson P. and Övergaard, G., Object-
Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, (1993).

Jacobson, I..Booch, G Rumbaugh, J., The Unified Software Develop-
ment Process,  Addison Wesley. (1999)

Kim, S. and Carrington,D., Formalizing the UML Class Diagrams using
Object-Z, proceedings UML´99 Conference, Lecture Notes in Com-
puter Sciencie 1723, (1999).

Knapp, Alexander,  A formal semantics for UML interactions, Proceed-
ings of the UML´99 conference, Colorado, USA,. Lecture Notes in
Computer Science 1723, Springer. (1999).

Övergaard, G., and Palmkvist,K., A Formal Approach to Use Cases and
Their Relationships. In UML�98 Conference, Lecture Notes in Com-
puter Science 1618. Springer-Verlag, (1998).

Övergaard, G., A formal approach to collaborations in the UML.  In
UML´99 Conference, Colorado, USA,. Lecture Notes in Computer
Science 1723, Springer. (1999).

Övergaard,G.. Using the Boom Framework for formal specification of
the UML. in Proc. ECOOP Workshop on Defining Precise Seman-
tics for UML, France, June 2000.

Overgaard G.and Palmkvist K.. Interacting subsystems in UML, Proc.
of The Third International Conference on the UML. LNCS. Octo-
ber 2000

Petriu,D and Sun,Y Consistent behaviour representation in activity and
sequence diagrams. Proc. of The Third International Conference on
the UML. LNCS. October 2000

Pons Claudia and Baum, Gabriel. Formal foundations of object-oriented
modeling notations 3rd International Conference on Formal Engi-
neering Methods, ICFEM 2000, IEEE Computer Society Press. Sept.
2000.

Pons , Claudia, Giandini, Roxana and Baum, Gabriel. Specifying Rela-
tionships between models through the software development pro-
cess, 10th International Workshop on Software Specification and
Design, USA, IEEE Computer Society Press. Nov. 2000.

Unified Modeling Language (UML) Specification - Version 1.3, March
2000. UML Specification, revised by the OMG, http://www.omg.org.

Sendall,S. and Strohmeier,A From Use cases to system operation speci-
fications.. Proc. of The Third International Conf. on the UML, UK.
LNCS. Oct 2000

Whittle, J.. Araújo, J.Toval, A Fernandez Alemán J.. Rigorously auto-
mating transformations of UML behavioral models, UML´00 Work-
shop on Semantics of Behavioral Models. UK, October 2000.



 

 

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/dimensions-object-oriented-software-

development/31865

Related Content

System Dynamics
Yutaka Takahashi (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 1261-

1272).

www.irma-international.org/chapter/system-dynamics/112523

Informationism, Information and Its Neuronal Theories
Emilia Currás (2012). Systems Science and Collaborative Information Systems: Theories, Practices and

New Research  (pp. 71-86).

www.irma-international.org/chapter/informationism-information-its-neuronal-theories/61286

An Optimised Bitcoin Mining Strategy: Stale Block Determination Based on Real-Time Data

Mining and XGboost
Yizhi Luoand Jianhui Zhang (2023). International Journal of Information Technologies and Systems

Approach (pp. 1-19).

www.irma-international.org/article/an-optimised-bitcoin-mining-strategy/318655

The Trajectivity of Virtual Worlds
Christophe Duret (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 4296-

4305).

www.irma-international.org/chapter/the-trajectivity-of-virtual-worlds/184135

An Efficient and Effective Index Structure for Query Evaluation in Search Engines
Yangjun Chen (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 7995-

8005).

www.irma-international.org/chapter/an-efficient-and-effective-index-structure-for-query-evaluation-in-search-

engines/184495

http://www.igi-global.com/proceeding-paper/dimensions-object-oriented-software-development/31865
http://www.igi-global.com/proceeding-paper/dimensions-object-oriented-software-development/31865
http://www.irma-international.org/chapter/system-dynamics/112523
http://www.irma-international.org/chapter/informationism-information-its-neuronal-theories/61286
http://www.irma-international.org/article/an-optimised-bitcoin-mining-strategy/318655
http://www.irma-international.org/chapter/the-trajectivity-of-virtual-worlds/184135
http://www.irma-international.org/chapter/an-efficient-and-effective-index-structure-for-query-evaluation-in-search-engines/184495
http://www.irma-international.org/chapter/an-efficient-and-effective-index-structure-for-query-evaluation-in-search-engines/184495

