IDEA GROUPPUBLISHING

l—y

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA

ITP4248

Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

On Extracting the Semantics of the Iterator
Pattern For Use in a Case Tool

!Joan Peckham and *Scott J. Lloyd
University of Rhode Island, 'Tel: (401) 874-4174, 'Fax: (401) 874-4617

ABSTRACT

Tel: (401) 874-7056, ?Fax: (401) 874-4312, joan@cs.uri.edu,.sjlloyd@uri-edu

Software patterns are used to facilitate the reuse of object-oriented designs. While most CASE (Computer Aided Software Engineering)
tools support the use of UML (Unified Modeling Language) [AO98] to extract the design from the software engineer and assist in
development, most do not provide assistance in.the integration and code generation of software patterns. In this paper, we analyze the
Iterator software pattern [Gamma95] for the semantics that would be used in a CASE design tool to help the software engineer to
integrate this pattern into the design and then generate some of the code needed to implement the pattern. This work is based upon
semantic data modeling techniques that were previously proposed for the design of active databases [BMPV97, PMD95].

INTRODUCTION

One of the intents of the object-oriented (OO) programming
paradigm is to assist in the reuse of code through the use of classes that
bundle data structures and procedures in such a way that that they could
more easily be moved from one implementation to another. When OO
languages were first introduced, code libraries were developed to per-
mit the sharing of objects and classes. At the same time; OOA&D
(Object-Oriented Analysis and Design) techniques. were being devel-
oped [Booch94, CY91, Jacobson92, Rumbaugh9l, W-BWWO90]. This
gave us a set of notations for expressing the design of OO applications.
The library became a vehicle for the reuse of the OO designs and led to
the capture of software patterns or designs that are frequently reused
in software applications, but are somewhat independent of particular
application types.. These patterns are archived in books, for example
[Gamma95]. A combination of text, UML, and code samples is used to
communicate the patterns. Early industrial experience indicates that
patterns speed the development of systems but are hard to write
[Beck96] so a few CASE tools provide computer assistance to the
programmer in choosing and integrating automatically generated code
for the patterns in their applications.

CASE tools that support the use of software patterns inelude
[BFVY96, FMW97, Paulisch96]. While these tools are just beginning
to emerge, none have integrated code generation and general-design in
a generic way that permits seamless code specification with patterns.
For example, the techniques are not generally language independent
and are unable to generate code in more than one language. Some
existing tools generate code, but into a different workspace from the
general software specification and coding environment, requiring the
cutting and pasting of code from the pattern code space.

All software patterns have alternative implementations. These
are typically explained using text and sample code. Software engineers
are then expected to use this information to construct their own
implementation of the pattern. Our goal here is to capture the seman-
tics of patterns well enough so that they can be presented to the
software engineer via a named choices in the CASE tool and then be
used to generate the code. Earlier in [PMO00] we began to elaborate
the choices in the Observer pattern of [Gamma95]. In this paper we
look at the Iterator pattern from the same source.’

A PATTERNS PRIMER

The Iterator Pattern

As laid out in [Gamma95], patterns are described using diagrams,
textual descriptions, and sometimes with examples using a pseudo
language or code. _ Included in each pattern description are:

Name - The name of the pattern

Classification - The type of pattern based upon the authors’ classifi-
cation system (there are three, creational, structural, and behavioral)

Intent - The purpose of the pattern, what it does

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations,
Information Resources Management Association International Conference.

Also known as - Other used or known names for the pattern.

Motivation - A concrete example to help you understand the
general pattern

Applicability - Where to use the pattern.

Structure-- A graphical representation of the pattern using a
UML like notation

Participants - Description of the participating objects and classes

Collaborations - How the participants interact

Consequences - How the pattern carries out its goals, and the results
(positive and negative).

Implementation - Tips, possible pitfalls, and language specific issues.

Sample code - Some examples in a specific language.

Known uses - Where the pattern has been used in widely known
commercial or research software.

These pattern characteristics help the reader to understand the
nature of the pattern. From these patterns we can extract the alterna-
tive semantics for the pattern and use them to generate the code. In
[Gamma 95] the Iterator pattern is described. The purpose of this
pattern is to “provide a way to access the elements of an aggregate
object sequentially without exposing its underlying representation.”
The intent here is to permit transparency in the access and use of the
aggregate object. This permits the user of the aggregate to traverse it
without having to know the details of its structure and implementa-
tion. This is a primary OO design principle that permits the encapsu-
lation of particular modules of code to reduce errors and permit easy
code maintenance. This decouples the aggregate object from the rest
of the code and makes it easier to export it to other applications. At
the same time, the aggregate is still useable by the application.

The basic structure of the Iterator pattern is shown in Figure 1. The
client (the code that uses the Iterator) is shown in faint print. There are
two roles in this pattern known as Aggregate and Iterator. The client must
know of the existence of both. It calls the Createlterator method in
Aggregate to create Iterator, which then assists it to traverse Aggregate.
But since this method is a part of the Aggregate class, the details of how to
iterate.and thus create the iterator are hidden from the client. The client
however does also know that the methods First, Next, IsDone, and
Currentltem will be available once the Iterator is created.

Notice that the pattern makes use of abstract and concrete classes in
the definition of the Iterator and Aggregate. This permits, for example,
the creation of method signatures in the abstract class that are generic
enough to be reused in a variety of applications and the concrete version
with the elaborated code to be used in a specific application.

To implement the Iterator pattern the software engineer must
normally read a textual description in a book, then develop a refined
design, and then implement “by hand” the features of the pattern that
are important for the intended application. For example:

Delete iterators- To prevent “memory leaks” caused by ob-
jects that are created and then not deleted once they are no
longer needed in the program, there needs to be a means for

the proceedings of the
Copyright © 2002, Idea Group Inc.



572 TIssues and Trends of IT Management in Contemporary Organizations

the client to delete the Iterator object. This is especially
important in C++ where memory management is not supplied
by the run-time program. Gamma et. al. [Gamma95] suggests
that an IteratorPtr class is created to simplify the code needed
to access the Aggregate object and to assure that a destructor
is called to remove the object when it is no longer used. Most
of the code can be generated when the Iterator pattern is chosen.
Thus, the software engineer saves time and prevents errors by
not having to code this feature each time the pattern is used.

The above is a feature that should always be used when coding the
pattern in C++. In the next example, we look at pattern options that
would need alternative implementations for the same feature (itera-
tion). In some cases, different code can be generated, therefore, the
CASE tool provides the software engineer with a means to choose the
specifics of a particular implementation:

List Iteration Choices

There are two choices for iterating over the aggregate object,
internal (11) and external (EI). If the client controls the iteration by
explicitly requesting the next element from the iterator, then this is
external. The other alternative is that the iterator carries out the
whole iteration once the client begins the process. The intended appli-
cation will of course determine this choice and the software engineer
should merely implement the appropriate method. Once this is cho-
sen, there are additional alternatives for implementation. For ex-
ample, if generating code in a language that does not have adequate
support for the parameterization of the functions used to iterate, the
internal iteration alternative can be clumsy to implement; however,
there are two choices available to the engineer: 1) Pass a pointer to
the function needed to be applied iteratively, and 2) Use inheritance to
resolve the particular functions needed.

The code for applying the internal iterator is given in Gamma,
although knowing the type of aggregate object upon which the iteration is
being carried out as well as the type of activity performed during iteration
is needed. In the example given, the aggregate object was a list of employ-
ees and the operator applied upon-iteration. was PrintEmployees. How-
ever, the code generation facility-in the CASE tool can generate the code
and leave the specific aggregate and operators blank with instructions for
the software engineer to fill in. For example, here is a passage of C++ code
needed to'implement an-internal iterator:

template <class Item>
class ListTraverser {
public:
ListTraverser (List <Item>* aList);
Bool Traverse ();
protected:
Virtual bool Processltem (const Item&) = 0;
private: Listlterator<Item> _iterator;
1

This code can be generalized and given slots to be filled in for the
particular application in question, for example the software engineer
can be presented with the following with a legend that annotates the
code with a guide of how to fill in the italicized code:

template <class Aggltem>
class AggTraverser {
public:
AggTraverser (Agg <Aggltem>* AggType);
Bool Traverse ();

protected:
Virtual bool ProcessAggltem (const Aggltem&) =
0;

private: Agglterator<Aggltem> _iterator;

1

In some cases,~the implementation choices are not very specific
and very little code can be generated. But, even if only class and
method headers-are generated, this can assist the programmer in mak-
ing sure that all of these features are present.

CONCLUSIONS

Software patterns can be very useful to prevent software design-
ers and developers from “reinventing the wheel” for every new utiliza-
tion of a specific pattern . This can lower the cost of software devel-
opment and maintenance, providing more robust and error free code.
Currently software patterns have not been integrated.into. CASE tools
in a robust manner. In this paper we have shown how we envision the
integration of patterns into CASE design tools assist in the selection
of the proper patterns and to partially generate the code to implement
the Iterator pattern. There are numerous other applications possible
for this type of software tool that will be explored in future research.
For example, the pattern books outline how specific patterns can be
used with each other in a system design. The CASE tool can use this
information to offer assisting and cooperating patterns to the designer
and begin to generate the code. It can also provide checking assistance
in identifying problems or errors that are frequently made when spe-
cific patterns or combinations of patterns are selected.

ENDNOTE

1 Thank you to Heng Chen, Chen Gu, and Mingsong Zheng of
Professor Peckham’s CSC 509 (Software Engineering) class for begin-
ning to outline the semantics of this pattern in a classroom exercise
for us.

Figure 1: Iterator pattern, basic structure

hggregane - Chent e | ey
Createlteratea) Furst ()
< et
ISDane()
Curreniltem{)
ComcremAzemegam * Cancreielerater

F Y

Createlteraton|)

REFERENCES

[AO98] Alhir, A., Oram, A. UML in a Nutshell: A Desktop Quick
Reference (Nutshell Handbook). O’Reilly and Associates. 1998.
[Beck96] Beck, D., et. al., “Industrial Experience with Design Pat-

terns”, Proceedings of ICSE-18, 1EEE, 1996, p. 103-113.

[Booch94] Booch, G., Object Oriented Analysis and Design, 2™ ed.,
Benjamin Cummings, 1994.

[BMPV97] Brawner, MacKellar, Peckham, and Vorbach, “Automatic
Generation of Update Rules to Enforce Consistency Constraints in
Design Databases™, in 7th IFIP 2.6 Working Conference on Data-
base Semantics (DS-7) Searching for Semantics: data mining, re-
verse engineering, etc., Spaccapietra and Maryanski, editors,
Chapman and Hall, 1997.

[BFVY96] Budinsky, F., Finnie, M., Vlissides, J., and Yu, P., “Automatic
Code Generation from Design Patterns”, IBM Systems Journal, Vol.35,
No. 2, p. 151-171, 1996.

[CY91] Coad, P, and Yourdon, E, Object-Oriented Analysis, 2™ ed.,
Prentice-Hall, 1991.

[FMWO97] Florijn, G, Meijers, M., van Winsen, P., Tool Support for
Object-Oriented Patterns, Proceedings of ECOOP’97, Finland, 1997.

[Gamma95] Gamma, Helm, Johnson, Vlissides, and Booch. Design Pat-
terns : Elements of Reusable Object-Oriented Software. Addison-
Wesley. 1995.




Issues and Trends of IT Management in Contemporary Organizations 573

[Jacobson92] Jacobson, 1. Object-Oriented Software Engineering,
Addison-Wesley, 1992.

[Paulisch96] Paulisch, F., “Tool Support for Software Architecture”,
SIGSOFT 96 Workshop, San Francisco, CA, 1996, p. 98-100.

[PMD95] Peckham, MacKellar, Doherty. “A Data Model for the Ex-
tensible Support of Explicit Relationships in Design Databases”,
VLDB Journal, 4(2), 1995, p. 157-159.

[PMO0O] Peckham and MacKellar, “Generating Code for Engineering
Design Systems Using Software Patterns”, Artificial Intelligence in
Engineering, Elsevier, 2000.

[Rumbaugh91] Rumbaugh, J., et.al., Object Oriented Analysis and De-
sign, Prentice-Hall, 1991.

[W-BWW90] Wirfs-Brock, Wilkerson, and Weiner, L., Designing
Object-Oriented Software, Prentice-Hall, 1990.



0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/extracting-semantics-iterator-pattern-
use/31848

Related Content

Online Survey: Best Practice

Tomayess Issa (2013). Information Systems Research and Exploring Social Artifacts: Approaches and
Methodologies (pp. 1-19).

www.irma-international.org/chapter/online-survey-best-practice/70707

The Role of Feedback in Software Process Assessment

Zeljko Stojanovand Dalibor Dobrilovic (2018). Encyclopedia of Information Science and Technology, Fourth
Edition (pp. 7514-7524).
www.irma-international.org/chapter/the-role-of-feedback-in-software-process-assessment/184448

Using Metaheuristics as Soft Computing Techniques for Efficient Optimization

Sergio Nesmachnow (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 7390-
7399).
www.irma-international.org/chapter/using-metaheuristics-as-soft-computing-techniques-for-efficient-optimization/112436

A Systemic, Participative Design of Decision Support Services for Clinical Research

Alexandra Pomares Quimbaya, Rafael A. Gonzéalez, Wilson Ricardo Bohorquez, Oscar Mufioz, Olga
Milena Garciaand Dario Londofio (2014). International Journal of Information Technologies and Systems
Approach (pp. 20-40).
www.irma-international.org/article/a-systemic-participative-design-of-decision-support-services-for-clinical-
research/117866

PolyGlot Persistence for Microservices-Based Applications

Harshul Singhal, Arpit Saxena, Nitesh Mittal, Chetna Dabasand Parmeet Kaur (2021). International Journal
of Information Technologies and Systems Approach (pp. 17-32).
www.irma-international.org/article/polyglot-persistence-for-microservices-based-applications/272757



http://www.igi-global.com/proceeding-paper/extracting-semantics-iterator-pattern-use/31848
http://www.igi-global.com/proceeding-paper/extracting-semantics-iterator-pattern-use/31848
http://www.irma-international.org/chapter/online-survey-best-practice/70707
http://www.irma-international.org/chapter/the-role-of-feedback-in-software-process-assessment/184448
http://www.irma-international.org/chapter/using-metaheuristics-as-soft-computing-techniques-for-efficient-optimization/112436
http://www.irma-international.org/article/a-systemic-participative-design-of-decision-support-services-for-clinical-research/117866
http://www.irma-international.org/article/a-systemic-participative-design-of-decision-support-services-for-clinical-research/117866
http://www.irma-international.org/article/polyglot-persistence-for-microservices-based-applications/272757

