
Issues and Trends of IT Management in Contemporary Organizations 517

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

INTRODUCTION
Applications are more and more often built on top of existing

ones. Legacy applications and Enterprise Ressource Planning (ERP)
are typical examples of development on top of a existing applications
or components. It is very important to deal with the particularities of
such context in the earliest stages of the process, and especially during
the analysis phase, in order to control the risks inherent to this kind of
development. Therefore, it is useful to clearly define as soon as pos-
sible what will be kept from the running application, why and how.
Integration and interfacing aspects have also to be studied carefully.

Problems related to building on top of existing applications have
been studied from the implementation point of view [Fo99,Be97,Op92].
But we believe that it has to be taken into consideration already during
the analysis phase. Indeed, in addition to the code itself, the expertise
about the functional domain and the interfaces (describing the rela-
tionships the existent application may have with others systems) may
also be of interest, as it will be shown in this paper.

UML [OMG,RJB98,BRJ98] is an object-oriented graphical lan-
guage. It is now a standard notation used by programmers as well as
domain expert, through the whole development cycle. UML is
customizable through the notion of profile [JBR98] which allows to
re-assemble a set of extensions dedicated to a particular kind of appli-
cation or development process. It has already been used in various
domains [NF00,KS00]. In this paper, we present a profile dedicated to
development on top of running applications.

The profile presented in this paper is part of the COOP method-
ology (Contextual Object-Oriented Process) where we propose a flex-
ible approach for analysis and design with regards to the context of the
application. The need for situation-specific approaches, to better sat-
isfy particular situation requirements, has already been emphasized
[SH96, RR01]. In COOP, the application context is described through
different criterias; to develop the application on top of existing ones
is one of these criterias. Flexibility is handled through the different
fragments proposed in each phase of the process. Some of them are
useful whatever is the context of the application, others are dedicated
to the criteria. The profile presented in this paper is used through the
fragments dedicated to applications developped on top of running
ones. By situating the application in its context and by choosing the
interesting fragments, the process is tailored for the application under
consideration in order to allow a more efficient development process.

The paper is organized as follows. In section 2 we introduce a
dedicated profile. Section 3 highlights the different aspects of preser-
vation. Section 4 shows how this profile is used through the COOP
methodology. Section 5 presents our conclusions.

A PROFILE FOR BUILDING ON TOP OF
EXISTING APPLICATIONS

Our profile reassembles a set of stereotypes which has been de-
fined to help in coping with problems related to developments on top
of running applications: to maintain a clear distinction between exis-
tent parts and new developments, to present the application in an
homogeneous way and to decide how the elements have to be pre-
served.

Towards A UML Profile For Building On
Top of An Existing Application

Isabelle Mirbel
Laboratoire I3S, Route des Lucioles, France, Tel: 33 4 9294 2760, Fax: 33 4 9294 2896, mirbel@unice.fr

Violaine de Rivieres
Amadeus sas, France, Tel: 33 4 9294 7023, Fax: 33 4 9294 7171, vrebuffel@amadeus.net

Use-Case Stereotypes
The main interest of use-case stereotypes is to clearly let under-

stand what is new from what is preserved in the application under
development. About elements taken from the existing applications, it
is required to distinguish what is re-used as it is and what will be modi-
fied. It may also be useful to include in the models dealing with the
analysis the description of elements which are not part of the applica-
tion under development but may be useful to understand how the
application will be working. It is important, in this case, to clearly
indicate that these elements are included only for better understanding
purpose. Therefore, the stereotypes dedicated to use-cases are the
following ones.
· New: a use-case describing new functionalities.
· To-be-modified: a use-case describing functionalities already exist-

ing in the running applications, but enhanced through the new devel-
opment under consideration.

· Re-use: a use-case describing existing functionalities reused as they
are.

· Out-of-scope: a use-case describing functionalities not belonging to
the application under study but useful to understand how the applica-
tion works.

Constraints among stereotyped use-cases: if a use-case uc1 de-
scribing the running applications is linked through an inclusion rela-
tionship to a use-case uc2 stereotyped <<New>> or <<To-be-modi-
fied>>, then uc1 must be stereotyped <<Re-use>> (and not <<Out-of-
scope>>) because it is impacted by the new functionalities. On the
contrary, if uc1 is related through an extension relationship to an-
other use-case uc2, then uc1 must be stereotyped <<Out-of-scope>>,
because it is not directly impacted by the new functionalities.

Actor Stereotypes
When dealing with the requirements of an application built on

top of existing ones, it is required to specify the actors already inter-
acting with the running applications (and still willing to continue the
interaction) from the actors participating in the new functionalities.
Most of all, systems already collaborating with the running parts of
the application have to be identified, because they may already use an
interface that must be kept compatible. These actors are a strong
constraint for the new development. The proposed stereotypes help
in distinguishing humans from systems and systems already interact-
ing with the application from the other ones.
� Human: a person interacting with the application (through a man-

machine interface).
� System: an actor interacting with the application and being a sys-

tem (and not a person).
o New system: a system which will use the services of the applica-
tion under development.
o Dependent system: a system already interacting with a running
application and maintained through the new application. It is called
a dependent system because it already exists and has still to be taken
into account through the new development.

� Constraining system: a system already interacting with
the running application. This stereotype indicates that the
actor wants to continue the interaction exactly in the same

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4235
IDEA GROUP PUBLISHING

518 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

terms: the interfaces it uses must be kept compatible. The
actor imposes constraints to the application.
� Collaborating system: a system already interacting with
the application. The actor will continue to interact with the
application but its interaction mode may be slightly modified.

The Figure 1 summarizes the different stereotypes dealing with
actors, and their relationships.

Class Stereotypes
When dealing with classes and associations, as well as with at-

tributes and operations, it is necessary to distinguish what has to be
developed from what is preserved from the running applications. As
for the use-cases, we distinguish reused classes as they are from classes
to be modified. We also complete the model by information about
classes not belonging to the application under development, but useful
to understand it.
· New: a new class, association, attribute or operation.
· To-be-modified: a class, association, attribute or operation to be

modified. In the case of attribute, operation and association, a note
has to be used to indicate what are the changes to be done on the
element and what are the mapping with regards to the preservation.

· Re-use: a class, association, attribute or operation kept as it is.
· Out-of-scope: a class, association, attribute or operation described

only for understanding purpose.

Package Stereotypes
Additional information given for understanding purpose may be

useful to explain and justify the development to be done. Such infor-
mation has to be isolated from the main part of the application, in a
particular package/set of packages stereotyped <<Out-of-scope>>.
� Out-of-scope: a package dealing with information associated to the

application only for understanding purpose.

Component Stereotypes
Stereotypes highlight components kept as is from the running

applications as well as components enhanced and new components.
� New: a new component of the application.
· To-be-modified: a component taken from a running application

and modified through the new development.
· Re-use: a component taken from a running application and kept as

it is in the new application.

DEALING WITH RUNNING APPLICATIONS
Different aspects of running applications may be of interest dur-

ing analysis. In addition to the code itself, the expertise about the

Figure 1: Actor stereotypes

functional domain (taken from the functionalities, data and screen
shots of the application) may also be of interest. The interfaces,
describing the relationships a running application may have with oth-
ers systems (applications, databases, ...), may also be taken into con-
sideration. By interfaces we do not include man-machine interfaces
which are already included in the first aspect (dealing with the func-
tional domain).

When dealing with legacy applications, for instance, the most
important aspects are the expertise about the functional domain and
the code, which has to be preserved and encapsulated. On the contrary,
when an application is built with a Rapid Application Development
tool, the code will not be preserved at all, but the expertise from the
business, in addition to the man-machine interfaces, will be preserved.
When starting a new development, the usual situation is the one which
consists in enhancing an application, through a new version. In this
case the three aspects (functional domain, interfaces, and code) have
to be taken into consideration.

The analysis is dedicated to the clear identification of what has to
be preserved, while the design indicates how such a preservation can be
handled. To carry on this work, it is important to determine if the
running part of the application:
� has to be reused as it is; for instance, while interfacing an existing

component without any possibility to modify it (bought compo-
nent);

� can be slightly modified; for instance, while interfacing an existing
component, developed by the company, but used by other applica-
tions;

� can be widely modified; for instance, when an application evolves
into a new version (and the development team is the owner of the
existing part).

The three aspects of preservation (functionalities, interfaces,
code) may be modulated in order to be better exploited during the
development. We qualify each of them by: (i) strong when no modifi-
cation is allowed, (ii) medium when modifications are allowed inside
given boundaries, and (iii) weak when modifications are allowed.

HANDLING THE PRESERVATION
THROUGH THE COOP METHODOLOGY

The COOP methodology is a flexible approach for analysis and
design with regards to the context of the application. The context is
described through different criterias; to develop the application on top
of existing ones is one of these criterias. To develop successfully an
application requires to select advisedly the concepts (diagrams, arti-
facts, etc.) to deal efficiently with analysis and design. In the COOP
methodology, we present different criterias affecting the analysis and
design phases: to build an application on top of existing ones is one of
the provided criterias. These criterias are simple and concrete and
require an answer by yes or no in order to adapt the development
process. The application context is evaluated a priori against these
critaria. However, it may sometimes be desirable to change the appli-
cation context as a result of the development process.

In this paper, we focus on the analysis work when dealing with an
application to build on top of existing ones. The analysis work is
divided into requirement analysis, domain and business object analysis
and system architecture. For each of these steps, we give guidelines
related to the different aspects of preservation: functionalities, code
and interfaces.

Requirement Analysis
The requirement analysis deals with the formalization and orga-

nization of explicit requirements (expressed by the user) and implicit
requirements (deduced by the analyst). Use cases allow to capture the
functional or technical requirements. When building on top of running
applications, the requirement analysis helps in identifying the services
already provided by the application and the enhancements which will
have to be developped.

Issues and Trends of IT Management in Contemporary Organizations 519

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

When functionalities and code are preserved: The focus of re-
quirement analysis is to clearly distinguish the new functionalities
from the ones already supported by the running part of the applica-
tion. With regards to already supported functionalities, a distinction
has to be done between functionalities preserved as they are and
functionalities enhanced through the new development. Functionalities
not directly related to the application under development may also be
included, for understanding purpose. Of course, their description do
not need to be as detailed as the descriptions dealing with the main
functionalities; they can even refer to existing documents (not neces-
sarily written with UML) or, if there is no existing document, directly
to the running application. One of the difficulty of the analysis work,
in addition to clearly identify and classify the different functionalities,
is to integrate all of them in an homogenized way. Therefore, the steps
to follow are:
1. Put in the same diagrams preserved and new use-cases according to

functional domains. Distinguish them clearly through the kind of
stereotypes: <<New>>, <<To-be-modified>>, <<Re-use>>, and <<Out-
of-scope>>.

2. Re-organize use-cases included in the same diagram, by using gener-
alization, inclusion or extension relationships, or by splitting them
(especially use-cases describing existing functionalities) in order to
allow the homogenization. It is important, while describing a <<To-
be-modified>> use-case to let the new functionalities appear explic-
itly and to link them (through extension, inclusion or generalization
relationships) to the use-case describing the existent functionalities.

3. The split to distinguish the preserved parts from the new ones may
lead to diagram(s) difficult to read and functionalities difficult to
understand. Therefore complete the diagram with activity diagram(s)
to clarify the ordering which are not explicit.

4. Bring together all the <<Out-of-scope>> use-cases in a separate
package, also stereotyped <<Out-of-scope>>.

The requirement analysis may lead to changes in stereotypes
associated with use-cases. For instance, a use-case stereotyped <<Out-
of-scope>> may finally appear as impacted by the new functionalities
and therefore stereotyped <<Re-use>>.

A split may also lead to the discovery of <<Out-of-scope>> use-
cases. It is important to always have in mind that the goal of the
analysis is to isolate the impacted parts of the application from the
non-impacted ones, and to clearly distinguish these two families through
the use of the <<Re-use>> and <<Out-of-scope>> stereotypes.

When interfaces are preserved: At this stage of the analysis, the
focus is on actors using the interfaces. Only actors representing sys-
tems (human actors interact with the application through man-ma-
chine interfaces, studied in the functional domain aspect) are of inter-
est. It is important to distinguish systems already interacting with the
application from systems which will be interacting with it. Indeed,
dependent systems do impose constraints which have to be identified
during the requirement analysis. The stereotypes presented in our
profile help in classifying the different kinds of actors and in high-
lighting the constraints.

Domain and Business Objects Analysis
The domain and business object analysis focuses on the descrip-

tion of the business. Class diagrams and state chart diagrams allow to
model the business domain. Enhancements related to the application
domain are captured during this step.

When functionalities are preserved: The business description is
given through the existing functionalities (instead of being captured
from the business domain). The work to be done is similar to what
could be done for a new application, but the input of the process is
different.

When code is preserved: As during the requirement analysis, our
process to deal with preservation is still driven by a clear differentia-
tion between existent and new information.

With regards to the packages stereotyped <<Out-of-scope>> (cf.
section 4.1), the steps to follow are:

1. Stereotype all the included classes with <<Out-of-scope>>.
With regards to the other packages, for each class.

1. Stereotype attributes and operations to clearly distinguish the exis-
tent from the new ones.
For each existing element:
a. if the preservation is qualified by strong: use the <<Re-use>>
stereotype.
b. if the preservation is qualified by medium or weak, choose to
modify or not the element. To choose to preserve the element leads
to use the <<Re-use>> stereotype. To choose to modify the element
consists in stereotyping it with <<To-be-modified>>.
c. Complete the element description with the characteristics taken
from the existent (type, length, and so on.). With regards to opera-
tions, modifications have to be documented precisely.
Stereotype new elements with <<New>>.

2. Generalize the element stereotype to the class if all its belonging
elements share a common stereotype. Otherwise, try to isolate the
<<Re-use>> elements from the <<To-be-modified>> and the <<New>>
elements, by using the generalization, specialization, association
and composition relationships, in order to associate a stereotype to
the class.

3. Stereotype the associations among classes as done for the elements.
The preserved characteristics of the association as well as modifica-
tions have to be documented.

4. For each class stereotyped <<Re-use>> or <<To-be-modified>>, if a
state-transition diagram is required (the class has a complex behavior
which need to be described):
a. Keep the diagram documenting the running application, or if it
does not exist, draw it.
b. If the class has a behavior different from the one described in the
diagram documenting the running application, modify the diagram.
It is important to note that a class a-priori stereotyped as <<Re-
use>> may finally be modified (and therefore stereotyped <<To-be-
modified>>) due to the fact that its state-transition diagram (i.e. its
behavior) is changed in the application to be developed.

When interfaces are preserved: The domain and business objects
analysis focuses on the description of the constraints related to inter-
actions between the application and the actors especially the actors,
stereotyped as <<Constraining system>>. The actor description is
completed by the description of classes belonging to the actors. Only
classes directly interacting with the application under development
are of interest. The idea is to show the services under the responsibility
of an external system from the services under the responsibility of the
application under development. Therefore:
1. For each actor stereotyped with <<System>>, document its classes

directly interacting with the application. Of course, the classes must
be linked to the classes of the application under development, other-
wise there is no reason to let them appear in the diagrams.

2. Stereotype each class with the name of the actor and document it
(component distribution, ...).

3. If required, use activity diagrams to document the interesting steps
of the services provided by the actor. For instance, an external
component may include a verification which is therefore not re-
quired in the current application. Activity diagrams allow to justify
why services are or are not supported by the application under devel-
opment. It may be especially useful to someone not involved in the
analysis and willing to participate in the forthcoming phases of the
development.

4. Use sequence diagrams to document the interaction between the
actors and the application under development.

System Architecture
The analysis of the system architecture is a crucial phase. Appli-

cations are more and more complex and it is therefore required to
think about their logical architecture (documented with component
diagrams). Currently, applications are also more often distributed and
it is therefore required also to specify their physical architecture (docu-

520 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

mented with deployment diagrams). When building on top of running
applications, this work is even more crucial because in addition to the
relationships among the components as well as among the nodes of the
application, the relationships with the running components have to be
decided.

When functionalities are preserved: It has no impact on this step
of the process.

When code is preserved: As through the previous steps, when
building on top of running applications, the goal of the system archi-
tecture step is to clearly distinguish the existent components from the
new ones and to highlight their relationships. We distinguish 4 cases:
� Case 1: The running application is preserved and new interfaces are

added. It is the case of legacy application, for instance.
� Case 2: Modifications on the running application are not very

important. It is mostly preserved and new functionalities (easy to
isolate) are added. In this case, the existing components are pre-
served separately from the new components. Existing components
use the services of the new components.

� Case 3: A lot of new functionalities are integrated in the applica-
tion. They can�t be isolated from the existing components. This
situation is called re-design.

� Case 4: The existing architecture is preserved and modifications
(not very important) are integrated in it.

The Figure 2 summarizes the different cases. Note that case 1 and
2 may coexist.

Each case presented previously need a suitable architecture. With
regards to case 1 and 2, the steps to follow to deal with such an
architecture are:
1. Organize the classes stereotyped with <<Re-use>> into components,

stereotyped also with <<Re-use>>. In case 1, the stereotype qualify-
ing the running components may even be better specified, for in-
stance with <<Encapsulated>>. If the application under study is a
legacy application, the stereotype may be named <<Legacy>> in-
stead of <<Encapsulated>> to emphasize the application context.

2. Organize the classes stereotyped <<New>> into components.
3. Identify the links among the components, especially between com-

ponents stereotyped <<New>> and <<Re-use>>.
In case 1, check that:
a. actors interact only with <<New>> components,
b. relationships among <<Re-use>> components and <<New>> com-
ponents always indicate that <<New>> components use the services
of the <<Re-used>> components (and not the contrary).
In case 2, on the contrary, check that:
a. actors interact only with <<Re-use>> components

Figure 2: Component architecture

b. relationships among <<Re-use>> components and <<New>> com-
ponents always indicate that <<Re-use>> components use the ser-
vices of <<New>> components (and not the contrary).

In case 3, the whole architecture is re-designed as if there was no
existent to start from. In this case, it is useless to indicate at the
component level if it includes classes stereotyped as <<New>>, <<To-
be-modified>> or <<Re-use>>, because all the components will have
to be created (from existing code or not) and will therefore be consid-
ered as <<New>> ones.

In case 4, the steps to follow are:
1. Build the component diagram from the documentation related to the

running application. If there is no documentation, the component
diagram has to reflect the current architecture and not the whished
one.

2. Associate the classes <<To-be-modified>> and <<Re-use>> to their
components.

3. Place the classes stereotyped <<New>> into existing components.
This placement has to be driven by the relationships among the
classes under study. This work may lead to the conclusion that the
architecture is not suitable and that it has to be changed (cf. Case 2).

4. Stereotype the components which require enhancement (through
classes <<New>> or <<To-be-modified>>) with <<To-be-modified>>
to highlight what will have to be taken under consideration through
the development.

When interfaces are preserved: There is no particular work to do
in addition to the standard analysis process. The component diagram(s)
is(are) built as for application developped from scratch.

CONCLUSION
In this paper we presented a UML profile for building on top of

existing applications. We do not reduce the existing application to its
code only. We also take into consideration the expertise about the
functional domain and the interfaces describing the relationships the
running application may have with others systems. The preservation
is also qualified by strong, medium or weak.

The profile presented in this paper is part of the COOP method-
ology (Contextual Object-Oriented Process) where we propose a flex-
ible approach for analysis and design with regards to the context of the
application. The profile is used through the fragments of the method-
ology dedicated to applications developped on top of running ones. By
situating the application in its context, by choosing the interesting
fragments and using the dedicated profile, the development process is
improved.

In the future, we would like to improve the COOP
methodology and the associated profile to better highlight
the incrementality of the process, and to handle traceabil-
ity through the different steps and fragments of the meth-
odology as well as through the different kinds of UML
diagrams used during the development process.

REFERENCES
[Be97] K. Beck, Smalltalk Best Practice Pat-

terns, Prentice Hall, Englewood Cliffs, NJ, 1997.
[BRJ98] Booch G., Rumbaugh J., Jacobson I., The Unified

Modeling Language User Guide, Addison-Wesley, 1998,
Object Technology Series.

[Fo99] M. Fowler Refactoring : Improving the Design of
Existing Code, Addison-Wesley, 1999, Object Technol-
ogy Series.

[IWP99] E. Insfran, R. Wieringa, O. Pastor, Using TRADE
to improve an object-oriented method, University of
Twente, 1999.

[JBR98] Jacobson I., Booch G., Rumbaugh J., Unified Soft-
ware Development Process, Addison-Wesley, 1998,
Object Technology Series.

[Kr00] P. Krutchen, The Rational Unified Process.
Addison-Wesley, 2000, Object Technology Series.

Issues and Trends of IT Management in Contemporary Organizations 521

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

[KS00] M. Macona Kandé, A. Strohmeier, Towards a UML Profile
for Software Architecture Descriptions, UML 2000: 513-527

[NuF00] N. J. Nunes, J. Falcão e Cunha, Towards a UML profile for
interaction design: the Wisdom approach, UML 2000: 101-116

[OMG] Object Management Group, http://www.omg.org/.
[Op92] William Opdyke, Refactoring Object-Oriented Frameworks, PhD

Thesis, Illinois 1992.
[Ral01] J. Ralyte, Ingenierie des methodes a base de composants. PhD

Thesis. Universite Paris I � Sorbonne. January 2001.
[RJB98] Rumbaugh J., Jacobson I., Booch G., The Unified Modeling

Language Reference Manual, Addison-Wesley, 1998, Object Tech-
nology Series.

[RR01] J. Ralyte, C. Rolland. An Assembly Process Model for Method
Engineering. CAISE 2001, p. 267-283. June 2001.

[SH96] K. van Slooten, B. Hodes. Characterizing IS Development
Projects. IFIP TC8, WG 8.1/8.2, p. 29-44. August 1996.

[Sou98] D. D�Souza, Catalysis: Objects, Components, and Frameworks
with UML, Addison-Wesley, 1998, Object Technology Series.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/towards-uml-profile-building-top/31835

Related Content

Formal Specification Language for Agent Oriented Systems
Vinitha Hannah Subburajand Joseph E. Urban (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 4107-4116).

www.irma-international.org/chapter/formal-specification-language-for-agent-oriented-systems/112853

Multimodality Medical Image Fusion using M-Band Wavelet and Daubechies Complex Wavelet

Transform for Radiation Therapy
Satishkumar S. Chavanand Sanjay N. Talbar (2015). International Journal of Rough Sets and Data

Analysis (pp. 1-23).

www.irma-international.org/article/multimodality-medical-image-fusion-using-m-band-wavelet-and-daubechies-complex-

wavelet-transform-for-radiation-therapy/133530

Trend-Aware Data Imputation Based on Generative Adversarial Network for Time Series
Han Li, Zhenxiong Liu, Jixiang Niu, Zhongguo Yangand Sikandar Ali (2023). International Journal of

Information Technologies and Systems Approach (pp. 1-17).

www.irma-international.org/article/trend-aware-data-imputation-based-on-generative-adversarial-network-for-time-

series/325212

IS Design Considerations for an Innovative Service BPO: Insights from a Banking Case Study
Myriam Raymondand Frantz Rowe (2016). International Journal of Information Technologies and Systems

Approach (pp. 39-56).

www.irma-international.org/article/is-design-considerations-for-an-innovative-service-bpo/152884

An Efficient Complex Event Processing Algorithm Based on NFA-HTBTS for Massive RFID

Event Stream
Jianhua Wang, Shilei Lu, Yubin Lanand Lianglun Cheng (2018). International Journal of Information

Technologies and Systems Approach (pp. 18-30).

www.irma-international.org/article/an-efficient-complex-event-processing-algorithm-based-on-nfa-htbts-for-massive-rfid-

event-stream/204601

http://www.igi-global.com/proceeding-paper/towards-uml-profile-building-top/31835
http://www.irma-international.org/chapter/formal-specification-language-for-agent-oriented-systems/112853
http://www.irma-international.org/article/multimodality-medical-image-fusion-using-m-band-wavelet-and-daubechies-complex-wavelet-transform-for-radiation-therapy/133530
http://www.irma-international.org/article/multimodality-medical-image-fusion-using-m-band-wavelet-and-daubechies-complex-wavelet-transform-for-radiation-therapy/133530
http://www.irma-international.org/article/trend-aware-data-imputation-based-on-generative-adversarial-network-for-time-series/325212
http://www.irma-international.org/article/trend-aware-data-imputation-based-on-generative-adversarial-network-for-time-series/325212
http://www.irma-international.org/article/is-design-considerations-for-an-innovative-service-bpo/152884
http://www.irma-international.org/article/an-efficient-complex-event-processing-algorithm-based-on-nfa-htbts-for-massive-rfid-event-stream/204601
http://www.irma-international.org/article/an-efficient-complex-event-processing-algorithm-based-on-nfa-htbts-for-massive-rfid-event-stream/204601

