Guidelines for Development of an Online Baccalaureate Degree in Information Systems

Kris Howell, PhD and Kathy S. Lassila, PhD
Computer Information Systems, University of Southern Colorado
Tel: (719) 549-2877, Fax: (719) 549-2519, {chandler, lassila}@uscolo.edu

ABSTRACT
Colleges and universities are entering the online education arena in increasing numbers. However, little information is available about what is needed to provide students with a quality information systems (IS) educational experience via the Internet. The web-based delivery of four-year IS programs is a recent innovation and little empirical evidence exists to suggest "best practices" in IS online education. This paper examines and synthesizes IS education criteria from two sources: the Computer Sciences Accreditation Commission which recently established criteria for accrediting programs in information systems, and the Regional Accrediting Commissions which issued guidelines for the evaluation of electronically offered degree and certificate programs. The result is a set of guidelines for the development of online baccalaureate programs in Information Systems that addresses both IS and online accreditation requirements.

INTRODUCTION
The current and projected nationwide shortage of information systems (IS) professionals is driving a renewed interest in IS education, as companies strive to hire new IS graduates and retrain existing employees. One solution to the growing demand for IS education is the use of the World Wide Web as an educational delivery mode. The proliferation of commercially available web-based training products is evidence of the potential of this educational delivery mode to address the needs of industry and the economy. Colleges and universities are entering the online education arena in increasing numbers, but what do we know about how to effectively deliver the IS degree online? What do we need to know to provide a quality IS educational experience via the Internet?

This paper addresses the questions posed above by presenting guidelines for the development of the online IS baccalaureate degree. The guidelines are developed through a synthesis of drafts from two relevant authorities on IS and online education: the Computer Sciences Accreditation Board (CSAB) of the Accrediting Board for Engineering and Technology (ABET); and the Council of Regional Accrediting Commissions (C-RAC), the organizational body for the eight regional accrediting commissions responsible for accrediting United States colleges and universities used the WICHE draft as the basis for developing "Guidelines for the Evaluation of Electronically Offered Degree and Certificate Programs" for accrediting degree programs offered electronically. The criteria drafted by the CSAB form a reasonable basis for the guidelines for the development of a web-based IS degree. Each of these criteria are discussed below.

The Computing Sciences Accreditation Board (CSAB) produced Version 5.2 of “Draft Criteria for Accrediting Programs in Information Systems” in August 2000 (CSAB, 2000). The criteria were adapted for information systems programs from the previously established accrediting criteria for programs in computer science. The key objectives of the criteria are:

- to assure an adequate foundation in business, general education, mathematics, social sciences, and information systems fundamentals,
- to assure appropriate preparation in advanced information systems areas,
- to prepare students to function effectively in the information systems profession in order to be considered for CSAB accreditation.

Overall, an information systems program must be designed to provide a broad general education at the baccalaureate level and prepare students to function effectively in the information systems profession. The CSAB criteria do not specifically address distance education or online degree programs, these programs are eligible for evaluation and accreditation review.

The criteria address eight major categories: program objectives and assessments, students, faculty, curriculum, technology infrastructure, institutional support and financial resources, program facilities, and institutional facilities. These categories, summarized in Table 1, will be applied to CSAB evaluation of information systems programs beginning in 2001.

The Western Cooperative for Educational Telecommunications/Western Interstate Commission for Higher Education (WICHE), recognized for its substantial expertise in the field of distance learning, initially developed a draft of guidelines for electronically offered degree programs in 1999 with the purpose of reflecting current best practice in online program delivery (Academic, January-February 2001; WICHE, 1999). The eight regional accrediting commissions responsible for accrediting United States colleges and universities used the WICHE draft as the basis for developing "Guidelines for the Evaluation of Electronically Offered Degree and Certificate Programs" for accrediting degree programs offered electronically. The Council of Regional Accrediting Commissions (C-RAC), the organizational body for the eight commissions, undertook the development of the draft to respond to the on-going emergence of technologically mediated instruction offered at a distance (C-RAC, 1999). The guidelines focused on providing assistance to institutions in planning distance education activities, and on providing a self-assessment framework for institutions already involved in such endeavors (C-RAC, 1999).
The C-RAC guidelines address five separate components: institutional context and commitment, curriculum and instruction, faculty support, student support, and evaluation and assessment. The five components of the C-RAC guidelines are summarized in Table 1 and synthesized with the CSAB draft criteria in the next section.

ONLINE IS DEGREE GUIDELINES

The C-RAC guidelines show that well-established standards of institutional quality are applicable to electronically mediated distance learning environments. The CSAB draft criteria provide educational standards for high quality post-secondary education in information systems. The synthesis of CSAB draft criteria and C-RAC guidelines results in recommendations for online information systems programs across seven key categories: (1) institutional context, support, financial resources and facilities; (2) program objectives and assessments; (3) faculty; (4) curriculum; (5) program delivery; and (6) students. Each of these categories and their implications for online IS bachelor's degree programs are discussed below.

(1) Institutional Context, Support, Financial Resources, and Facilities

The online IS program should be consistent with the role and mission of the institution. Specifically, offering the program to students at a distance should contribute to the institution’s fulfillment of its stated mission. By ensuring consistency with institutional mission, commitment to the targeted students of the online IS program should be reflected in institution budgets and policies. In particular, sufficient institutional support for faculty should be available to enable the program to attract and retain high quality faculty capable of supporting the program’s objectives. Program faculty should receive financial support to attend technical meetings to maintain currency in the field and in teaching, as well as recognition for scholarly activities and sufficient office support. Online IS programs should receive adequate program resources to function effectively with the rest of the institution’s role and mission. By ensuring consistency with institutional mission, programs’ resource commitments for the program.

<table>
<thead>
<tr>
<th>Category</th>
<th>CSAB IS Criteria</th>
<th>C-RAC Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Institutional Context, Support and Financial Resources</td>
<td>- Sufficient support for faculty to enable program to attract/retain high-quality faculty capable of supporting the program’s objectives
- Sufficient support for needed financial resources to allow faculty members to attend technical meetings to maintain professional competence, as teachers and scholars
- Support and recognition for faculty scholarly activities
- Sufficient office space for faculty members
- Adequate time assigned for administration of the program
- Sufficient program resources and atmosphere to function effectively with the rest of the institution
- Adequate library and information retrieval facilities that meet the needs of the program
- Evidence of continuity of institutional support and financial resources</td>
<td>- Program is consistent with the institution’s role and mission
- Notification/consultation with accrediting commission about program represents a major change to educational mode(s) intended student population(s), curriculum, modes of instruction
- Institution budgets/policies reflect commitment to target students of electronically offered programs
- Articulation/transfer policies judge/courses/programs on learning outcomes, not modes of delivery
- Education objectives are consistent with the mission of the institution
- Technical support provided to students for all hardware, software, and delivery system required in a program
- Selection of technologies is based on appropriateness for the students and the curriculum
- Institution observes the legal and regulatory requirements of the jurisdictions in which it operates.
- Evidence of institutional support for faculty should be available to enable the program to attract and retain high quality faculty capable of supporting the program’s objectives
- Program faculty should receive financial support to attend technical meetings to maintain currency in the field and in teaching, as well as recognition for scholarly activities and sufficient office support. Online IS programs should receive adequate program resources to function effectively with the rest of the institution’s role and mission. By ensuring consistency with institutional mission, programs’ resource commitments for the program.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>CSAB IS Criteria</th>
<th>C-RAC Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Institutional Facilities</td>
<td>- Library adequately staffed with professional librarians and support personnel
- Library technical collection includes up-to-date texts, reference works, and publications of professional and research organizations
- Systems for locating, obtaining, and updating electronic information available
- Classroom and laboratory space and equipment sufficient to meet objectives
- Facilities adequate to enable faculty members to meet their responsibilities</td>
<td>- Library adequately staffed with professional librarians and support personnel
- Library technical collection includes up-to-date texts, reference works, and publications of professional and research organizations
- Systems for locating, obtaining, and updating electronic information available
- Classroom and laboratory space and equipment sufficient to meet objectives
- Facilities adequate to enable faculty members to meet their responsibilities</td>
</tr>
</tbody>
</table>

Table 1: Comparison of CSAB IS criteria and C-RAC guidelines

<table>
<thead>
<tr>
<th>Category</th>
<th>CSAB IS Criteria</th>
<th>C-RAC Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) Program Objectives and Assessment</td>
<td>- Educational objectives are documented and consistent with the mission of the institution
- Objectives include expected outcomes for graduating students
- Process exists for periodic review of program/course
- Program assessment results used to identify/Implement program improvement
- Results of program evaluations identified for documentation</td>
<td>- As part of institution’s overall assessment, student performance is compared to intended learning outcomes in each course and at program completion; assessment results of student achievement are documented.
- Examinations and assessments in circumstances where accurate firm student identification is not possible are documented.
- Security of personal information is assured and security procedures are documented.
- Overall program effectiveness includes measures such as:
- Match between student learning and intended outcomes
- Extent to which student intent is met
- Student retention rates
- Student satisfaction, measured by periodic surveys
- Faculty satisfaction, measured by periodic surveys
- Extent to which access is provided to students not previously served
- Extent to which library/learning resources are used appropriately by students
- Student competence in fundamental communication, comprehension, and analysis skills
- Cost-effectiveness of program to students, compared to campus-based alternatives
- Program and results are reflected in the institution’s ongoing self-evaluation process
- Institutional evaluation of the program takes place in the context of the regular evaluation of all academic programs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>CSAB IS Criteria</th>
<th>C-RAC Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) Faculty</td>
<td>- Interests, qualifications, and scholarly contributions of the faculty members are sufficient to teach plan/modify courses and curriculum
- Faculty members are current and active in the discipline
- Majority of faculty hold terminal degrees; some must be in IS or closely related fields
- Faculty members have level of competence to do normally assigned through graduate work in IS
- Faculty members have adequate number of professional evaluation processes on their participation in professional evaluation processes
- Faculty members have level of competence to do normally assigned through graduate work in IS
- Support is provided for professional development and those working directly with students.</td>
<td>- Faculty satisfaction, measured by periodic surveys
- Extent to which access is provided to students not previously served
- Extent to which library/learning resources are used appropriately by students
- Student competence in fundamental communication, comprehension, and analysis skills
- Cost-effectiveness of program to students, compared to campus-based alternatives
- Program and results are reflected in the institution’s ongoing self-evaluation process
- Institutional evaluation of the program takes place in the context of the regular evaluation of all academic programs.</td>
</tr>
</tbody>
</table>
Selection of technologies to support the online IS program must be based on the appropriateness of the technologies for the students and the curriculum. A consistent, coherent technical framework for students and faculty will minimize the impact of technological change on these parties. In addition, technical support must be provided to all students for all hardware, software, and the delivery system required for completion of the online IS program.

Also within the institutional context, articulation and transfer policies must judge courses and programs on learning outcomes and not on modes of delivery to ensure that students receive the greatest benefit from the online IS program. And finally, the institution must observe the legal and regulatory requirements of the jurisdictions in which it operates.

(2) Program Objectives and Assessment

Educational objectives and expected outcomes for graduating IS students must be specified and documented for online IS programs. The online IS program and its results must be reflected in the institution’s ongoing self-evaluation process, and institutional evaluation of the program must take place in the context of regular evaluation of all academic programs. A clear process must exist for the periodic review of the online IS program and its related courses. In addition, the results of program reviews must be used to identify and implement program improvements, and the review and actions taken must be documented. A variety of effectiveness measures should be incorporated in the assessment of online IS programs, including: match between student learning and intended outcomes; extent to which student intent is met; student retention rates; student satisfaction; faculty satisfaction; extent to which access to the online IS program reaches previously unserved students; extent to which library/information resources are used appropriately by students; student competence in fundamental communication, comprehension, and analysis skills; and cost effectiveness of the program to students compared to campus-based alternatives.

In the online program environment, it is also important that the security of personal information is assured and that security procedures are documented. Also, when examinations are administered via electronically mediated distance formats, circumstances must include accurate student identification measures.

(3) Faculty

Faculty face a number of issues when moving from traditional classroom-based delivery to online IS course delivery. In online IS programs, the institution and participating faculty must develop policies and agreements on workload, compensation, ownership of intellectual property resulting from the program, and implications of program participation for faculty professional evaluation processes. The institution must also provide an on-going program of technical design and production support for online IS faculty members. Training in pedagogies and technologies appropriate for online course delivery is also essential for those developing courses and working directly with students online.
Faculty members participating in the online IS program should demonstrate interests, qualifications, and scholarly contributions sufficient to teach, plan and modify online IS courses and the curriculum. In addition, the majority of faculty in the program must hold terminal degrees, some of which must be in IS or a closely related field. In short, faculty members must have a level of competence that would normally be obtained through graduate work in IS. All faculty members are expected to remain current and active in the discipline.

(4) Curriculum

The CSAB draft criteria establish curricular guidelines for programs in IS (CSAB, 2000). The focus of the recommended curriculum is on combining professional, general education, and elective requirements to prepare graduates for a professional IS career. The specific curriculum requirements include:
- At least 30 semester hours of IS topics
- At least 15 semester hours in an IS environment, such as business
- At least 9 semester hours in quantitative analysis beyond pre-calculus, including statistics and calculus or discrete mathematics
- At least 30 semester hours of study in general education

In addition, the online IS program must assist students in the development of oral and written communication skills, and collaborative skills. It must also provide sufficient coverage of global, economic, social, and ethical implications of computing.

The curriculum requirements specified by the CSAB draft criteria have serious implications for the online IS program. It is not sufficient for the IS major courses to be offered online. Online offerings must be extended to general education, mathematics, statistics, and business or some other appropriate environment if the online IS baccalaureate degree will be available to students. Ideally the institution has made a commitment to providing online baccalaureate degrees and the online IS program will have a variety of courses from which to choose.

(5) Program Delivery

Program delivery refers to the involvement of full-time faculty with the online IS program. A sufficient number of full-time faculty members with primary commitment to the IS program must exist to provide continuity and stability to the program. Full-time faculty must oversee all course work, cover most of the online instruction, remain current in the discipline, and have sufficient time for scholarly activities and professional development. Advising duties must also be a recognized part of the faculty members’ workloads.

(6) Students

The online IS program must offer courses with sufficient frequency and continuity to ensure that students can complete the degree in a reasonable amount of time. Prior to admission of the student to the online IS program, the student must be determined to be qualified in a reasonable amount of time. Prior to admission of the student to the online IS program, the student must be determined to be qualified via prior education or equivalent experience to participate in the program. The student must also be provided information on: required access to technologies used in the program; technical competence required to participate in the program; estimated program costs and associated payment and refund programs; curriculum design and timeframe in which courses are offered; availability of library and other learning services; availability of full array of support services available at the institution; arrangements for interaction with the faculty and fellow students; nature and potential challenges of learning in the program’s technology based environment; and estimated time for program completion.

The institution must also make appropriate services available to online students, such as advising on program completion, course selection, and career opportunities. The institution must also recognize the importance of a “sense of community” to students’ success, and ensure effective interaction between teaching faculty and students throughout the program. Finally, standards and procedures must be established to ensure that graduates meet program requirements.

DISCUSSION

In synthesizing the IS degree criteria and the electronically offered program accreditation guidelines, several distinct differences between traditional classroom IS education and online IS programs emerged.

First, institutional facilities obviously become less important for off-campus students enrolled in the online IS program. Instead, the technological context provided by the institution is of major importance. It is this technological context that will mediate the student’s connection to the program and directly affect student interaction with the course, instructor, and fellow students. Technological context must be suitable, reliable, flexible, and easily adaptable for students and for faculty.

Second, interactions between online IS students and faculty, and among IS students must be more directly facilitated. Little facilitation is necessary for students in a face-to-face classroom environment. To nurture the potential benefits from faculty-student and student-student interaction, more deliberate, planned actions must be taken in the online IS program. These actions may involve scheduling chat rooms, interactive chat appointments, or facilitating small group projects and communication.

Third, student assessment as a part of overall program assessment is difficult. When examinations, assignments, and other evaluative activities are part of the online course, action must be taken to ensure the student enrolled in the class is the student completing the activity. This is not as easily accomplished as it is in typical classroom interactions.

Finally, faculty in online IS programs face unique challenges. Not all faculty will be effective teaching in online IS programs. Special training in online techniques and pedagogy is necessary to ensure that all participating faculty have the skills necessary to develop and facilitate online learning experiences.

FUTURE DIRECTIONS

Online IS baccalaureate programs are in their infancy. The guidelines provided here are based on current knowledge of effective IS education and effective electronically offered degree programs. As more 4-year IS degree programs go online, research opportunities will be created. Some of the key research questions of interest to institutions, faculty, students, and prospective employers of graduates include:

Do online IS program students perform at the same level as students in traditional IS classroom programs?

Do online IS program students show higher levels of satisfaction with their educational experience than traditional IS program students?

Are online IS graduates as well-prepared for the IS profession as graduates of traditional IS classroom programs?

Are employers as satisfied with graduates of online IS programs as they are with graduates of traditional IS programs?

Do online IS program graduates achieve the same success as graduates of traditional programs?

Are online IS degree programs as effective as traditional classroom programs?

The most pressing need is to empirically determine a set of “best practices” for the online IS degree program, rather than extrapolating these best practices from prior experiences in distance learning.

CONCLUSION

Online IS baccalaureate programs are emerging educational experience. Established institutional standards for high quality educa-
tional delivery apply to electronically mediated learning experiences as well as to more traditional classroom models. Prior experience in distance learning also provides guidance for the development of online IS programs. By synthesizing approaches from the institutional guidelines as delineated by the CSAB draft criteria and the distance learning best practices identified by the C-RAC, this paper develops a set of worthwhile guidelines for the development of online IS baccalaureate degree programs. As more programs are developed and implemented, additional research must be conducted to empirically determine the efficacy of online IS programs.

REFERENCES
Related Content

Design Science: A Case Study in Information Systems Re-Engineering
www.irma-international.org/chapter/design-science-case-study-information/23477

Accident Causation Factor Analysis of Traffic Accidents using Rough Relational Analysis
www.irma-international.org/article/accident-causation-factor-analysis-of-traffic-accidents-using-rough-relational-analysis/156479

Detecting Inconsistency in the Domain-Engineering
www.irma-international.org/chapter/detecting-inconsistency-in-the-domain-engineering/112406

A New Approach to Community Graph Partition Using Graph Mining Techniques
www.irma-international.org/article/a-new-approach-to-community-graph-partition-using-graph-mining-techniques/169175

Hybrid Data Mining Approach for Image Segmentation Based Classification
www.irma-international.org/article/hybrid-data-mining-approach-for-image-segmentation-based-classification/150465