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ABSTRACT
Java is a prevailing implementation platform for XML based systems. Several high quality in-memory im-plementations for the stan-
dardized XML-DOM API are available. However, persistency support has not been ad-dressed. In this paper, we discuss this problem and
intro-duce PDOM (persistent DOM) to accommodate documents as permanent object sets. In addition, we propose a new in-dexing
technique: path signatures to speed up the evalua-tion of path-oriented queries against document object sets, which is further enhanced
by combining the technique of pat-trees with it to expedite scanning of signatures. Experiments were performed to show that this
technique brings really substantial advantages.

INTRODUCTION
Due to the growth of networks, the treatment of electronic in-

formation is becoming more and more important. As a subset of SGML,
XML is recommended by W3C (World Wide Web Consortium) as a
document description metalanguage to exchange and manipulate data
and documents on the WWW. The potential of XML is unlimited, and
many new applications using XML currently arise, including a Chemi-
cal Markup Language for exchanging data about molecules and the
Open Financial Exchange for swapping financial data between banks
and banks and customers [Bos97]. Also, a growing number of legacy
systems are adapted to output data in the form of XML documents.

The Document Object Model (DOM) is a platform- and language-
neutral interface for XML. It provides a standard set of objects for
representing XML data: a standard model of how these objects can be
combined and a standard interface for accessing and manipulating them.
There are half a dozen of DOM implementations available for Java
from several vendors such as IBM, Sun Microsystems and Oracle.
However, all these implementations are designed to work in main
memory only. Traditional databases are of limited use for realizing
persistency support for the DOM because in many cases XML docu-
ments do not adhere to a fixed docu-ment type (even though they are
considered to be well formed), from which an efficient database schema
can be derived.

In this paper, we introduce a storage method for documents called
PDOM (persistent DOM), implemented as a lightweight, transparent
persistency memory layer, which does not require the burdensome
design of a fixed schema. Great care has been taken to hide implemen-
tation details from the application level. As a result, it is possible to
plug in a PDOM wherever an in-memory DOM has been used before. A
PDOM can replace proprietary database solutions and greatly simplify
software design.

In addition, we propose an indexing technique: path signatures to
speed up the evaluation of queries against documents stored structur-
ally. Using the path signatures, we can avoid traversal along useless
paths to expedite path-oriented queries. This technique can be com-
bined with the technique of pat-trees [Kn73, Mo68] to make a further
improvement of performance. As shown in our experiments (see Sec-
tion 5), this technique can improve the performance by an order of
magnitude or more.

The rest of this paper is organized as follows. In Section 2, we
give our system architecture to provide a background for the subse-
quent discussion. Section 3 is devoted to storage of documents as
object sets. In Section 4, we discuss the technique of path signatures
and its combination with pat-trees. Section 5 outlines the implementa-
tion and reports the experiment results. In Finally, Section 6 is a short
conclusion.

SYSTEM ARCHITECTURE
The system architecture can be pictorially depicted as shown in

Fig. 1, which consists of three layers: persistent object manager, stan-
dard DOM API and specific PDOM API, and application support.
(1) (persistent object manager) The PDOM mediates between in-memory

DOM object hierarchies and their physical representation in binary
random access files. The central component is the persistent object
man-ager. It controls the life cycle of objects, serializes multi-threaded
method invocations, and synchronizes objects with their file repre-
sentation. In addition, it contains two sub-components: a cache to
improve performance and a commit control to mark recovery points
in case of system crashes. These two compo-nents can be controlled
by users through tuning parameters.

(2) (standard DOM API and specific PDOM API) The standard DOM
API methods for object hierarchy ma-nipulation are transparently
mapped to physical file operations (read, write, and update). The
system aims at hiding the storage layer from an application
programmer�s view to the greatest possible extent. Thus, for most
application, it is sufficient to use only stan-dard DOM methods. The
only exception is document creation, which is deliberately left appli-
cation-specific by the W3C DOM standard. The specific PDOM
API allows application to be aware of the PDOM to tune system
parameters for the persistent object manager as well as its subsystems:
cache and commit control. The specific API is mainly for the fine
grained control of the PDOM, not intended for the casual program-
mers. Rather, it is the place to experi-ment with ideas and proof
concepts.

(3) (application support) This layer is composed of a set of functions
which can be called by an application to read, write, update or re-
trieve a document. In addition, for a programmer with deep knowl-
edge on PDOM, some functions are available to create a document,
to commit an update operation and to com-pact a PDOM file, in
which documents are stored as object hierarchies.

In the database (or PDOM pool), the DOM object hierarchies are
stored as binary files while the index structures: path signatures are
organized as a pat-tree.

STORAGE OF DOCUMENTS AS BINARY
FILES

It is organized in node pages, each containing 128 serialized
DOM objects. In PDOM, each object (node) corresponds to a docu-
ment identifier, an element name, an element value, a �Comment� or
a �Processing Instruction�. The attributes of an element is stored with
the corresponding element name together. These object (node) types
are equivalent to the node types in XSL [W3C98b] data model. Thus,
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Figure 1: Logical architecture of the system

Figure 2: Binary file for documents

a page does not have a fixed length in bytes, but a fixed number of
objects it holds. At the beginning of the file, there are two pointers.
The first points to a dictionary containing two mappings, by which
each element name ei and attribute aj are mapped to a different num-
ber, respectively; The numerical values are used for compact storage.
The second points to the node page index (NPI). The NPI holds an
array of point-ers to the start of each node page.

Each object is serialized as follows:
1. A type flag indicating the DOM-type: document identifier, element

name, element value, �Comment� or �Processing Instruction�.
2. Object content. It may be an integer representing an element name,

a PCDATA (more or less comparable to a string), or a string (WTF-
8 encoded) representing a �Comment� or a �Processing In-struction�.

3. Parent-element identifier (if available).
4. A set of attribute-value pairs. Here, each attribute name is repre-

sented by an integer, which can be used to find the corresponding
attribute name in the associated data dictionary. The attribute value
is a WTF-8 encoded string.

5. Number of sub-elements of an element and its sub-element identifi-
ers.

This serialization approach is self-describing, i.e., depending on
the type flag, the serialization structure and the length of the remain-
ing segments can be determined. The mapping between object identifi-
ers in memory (OID) and their physical file location is given by the
following equation:

OID = PI * 128 + i,
where PI is the index of the containing node page in the NPI and i is the
object index within that page. Obviously, this ad-dress does not refer
directly to any byte offset in the file or page (which may change over
time). Because of this, it can be used as unique, immutable object
identifier within a single document. In the case of multiple documents,
we associate each OID with a docID, to which it belongs. The follow-
ing example helps for illustration.

Example 1. In Fig. 3(a), we show a simple XML document.  It
will be stored in a binary file as shown in Fig. 3(b).

Figure 3: A simple document and its storage

From Fig. 3(b), we can see that the first four bytes are used to
store a pointer to the dictionary, in which an element name or an
attribute name is mapped to an integer. (For example, the element
name �letter� is mapped to �0�, �date� is mapped to �1�, and so on.)
The second four bytes are a pointer to the node page index, which
contains only one entry (4 bytes) for this example, pointing to the
beginning of the unique node page stored in this file. In this node page,
each object (node) begins at a byte which shows the object type. In our
implementation, five object types are considered. They are �docu-
ment�, �text� (used for an element value), �element� (for element
name), �comments� and 3", �4�, respectively. The physical identifier
of an object is implicitly implemented as the sequence number of the
object appearing within a node page. For example, the physical identi-
fier of the object with the type �document� is �0�, the physical iden-
tifier of the object for �letter� is �1�, and so on. The logic object
identifier is calculated using the above sim-ple equation when a node
page is loaded into the main memory. At last, we pay attention to the
data dictionary structure. In the first line of the data dictionary, the
number of the ele-ment names is stored, followed by the sequence of
element names. Then, each element name is considered to be mapped
implicitly to its sequence number, in which it appears. The same method
applies to the mapping for attribute names.
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Beside the binary files for storing documents, another main data
structure of the PDOM is the file for path signatures used to optimize
the query evaluation. To speed up the scanning of the signatures, we
organize them into a pat-tree, which reduces the time complexity by
an order of magnitude or more. We discuss this technique in the next
section in detail.

PATH-ORIENTED LANGUAGE AND PATH
SIGNATURES

Now we discuss our indexing technique. To this end, we first
outline the path-oriented query language in 4.1, which is nec-essary
for the subsequent discussion. Then, the concept of path signatures
will be described in 4.2. In 4.3, we will discuss the combination of path
signatures and pat-trees, as well as the corresponding algorithm imple-
mentation in great detail.

Path-Oriented Language
Several path-oriented language such as XQL [RLS98] and XML-

QL [DFF98] have been proposed to manipulate tree-like structures as
well as attributes and cross-references of XML documents. XQL is a
natural extension to the XSL pattern syntax, providing a concise,
understandable notation for pointing to specific elements and for
searching nodes with particular characteristics. On the other hand,
XML-QL has operations specific to data manipulation such as joins
and supports transformations of XML data. XML-QL offers tree-
browsing and tree-transformation operators to extract parts of docu-
ments to build new documents. XQL separates transformation opera-
tion from the query language. To make a transformation, an XQL
query is performed first, then the results of the XQL query are fed into
XSL [W3C98b] to conduct transformation.

An XQL query is represented by a line command which con-nects
element types using path operators (�/� or �//�). �/� is the child operator
which selects from immediate child nodes. �//� is the descendant opera-
tor which selects from arbitrary descendant nodes. In addition, symbol
�@� precedes attribute names. By using these notations, all paths of
tree representation can be expressed by element types, attributes, �/�
and �@�. Exactly, a simple path can be described by the following
Backus-Naur Form:
<simple path> ::= <PathOP> <SimplePathUnit> |

<PathOp><SimplePathUnit>�@�<AttName>
<PathOp> ::= �/� | �//�
<SimplePathUnit>::=<ElementType> |

<ElementType><PathOp><SimplePathUnit>
The following is a simple path-oriented query:

/letter//body [para $contains$�visit�],
where /letter//body is a path and [para $contains$�visited�] is a predi-
cate, enquiring whether element �para� contains a word �visited�.

Signature and Path Signature
To speed up the evaluation of the path oriented queries, we store

all the different paths in a separate file and associate each path with a
set of pointers to the positions of the binary file for the documents,
where the element value can be reached along the path. See Fig. 4 for
illustration.

 
letter/data 
letter/greeting 
letter/body/para 
letter/closing 
letter/sig 

� 
� 

binary file: path file: 

Figure 4: Illustration for path file

This method can be improved greatly by associating each path
with a so-called path signature used to locate a path quickly. In addi-
tion, all the path signatures can be organized into a pat-tree, leading to
a further improvement of performance.

Signature files are based on the inexact filter. They provide a
quick test, which discards many of the nonqualifying values. But the
qualifying values definitely pass the test although some values which
actually do not satisfy the search requirement may also pass it acciden-
tally. Such values are called �false hits� or �false drops�. The signature
of a value is a hash-coded bit string of length k with m bit set to 1,
stored in the �signature file� (see [Fa85, Fa92]). The signature of an
element containing some values is formed by superimposing the signa-
tures of these values. The following figure depicts the signature gen-
eration and and comparison process of an element containing three
values, say �SGML�, �database�, and �information�.

When a query arrives, the element signatures (stored in a signa-
ture file) are scanned and many nonqualifying elements are discarded.
The rest are either checked (so that the �false drops� are discarded) or
they are returned to the user as they are. Concretely, a query specify-
ing certain values to be searched for will be transformed into a query
signature sq in the same way as for the elements stored in the database.
The query signature is then compared to every element signature in
the signature file. Three possible outcomes of the comparison are
exemplified in Fig. 3: (1) the element matches the query; that is, for
every bit set to 1 in sq, the cor-responding bit in the element signature
s is also set (i.e., s Ù sq = sq) and the element contains really the query
word; (2) the element doesn�t match the query (i.e., s Ù sq ¹ sq); and (3)
the signature comparison indicates a match but the element in fact
doesn�t match the search criteria (false drop). In order to eliminate
false drops, the elements must be ex-amined after the element signa-
ture signifies a successful match.

Text: � SGML � databases � information 
Representative word signature: queries:  query     matching 
     Signature   results 
 SGML 010000100110 SGML  010000100110 match with 
             OS 
 database 100010010100 XML   011000100100 no match  
              with OS 
information 010100011000 informatik 110100100000 false drop 
 
object signa-  
ture (OS) 110110111110 

Figure 5: Signature generation and comparison

The purpose of using a signature file is to screen out most of the
nonqualifying elements. A signature failing to match the query signa-
ture guarantees that the corresponding element can be ignored. There-
fore, unnecessary element accesses are prevented. Signature files have
a much lower storage overhead and a simple file structure than in-
verted indexes.

The above filtering idea can be used to support the path-ori-ented
queries by establishing path signatures in a similar way. First, we define
the concept of tag trees.

Definition 4.1 (tag trees) Let d denote a document. A tag tree
for d, denoted Td, is a tree, where there is a node for each tag appearing
in d and an edge (nodea, nodeb) if nodeb represents a direct sub-element
of nodea.

Based on the concept of tag trees, we can define path signatures
as follows.

Definition 4.2 (path signature) Let root → n1 → ... → nm be a
path in a tag tree. Let sroot, si (i = 1, ..., m) be the signatures for root and
ni (i = 1, ..., m), respectively.

The path signature of nm is defined to be Psm = sroot ∨ s1 ∨ ... ∨ sm.
Example 2 Consider the tree for the document shown in Fig.

3(a). Removing all the leave nodes from it (a leaf always represents
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the text of an element) , we will obtain the tag tree for the document
shown in Fig. 3(a). If the signatures assigned to �letter�, �body� and
�pare� are sletter = 011 001 000 101, sbody = 001 000 101 110 and spara =
010 001 011 100, respectively, then the path signature for �para� is
Pspara = sletter ∨ sbody ∨ spara = 011001111111.
In the following, we show how to use the path signatures to
optimize the query evaluation. As an example, consider the
sample path-oriented query given in 4.1 once again.

Example 3 Assume that an additional (hidden) attribute is at-
tached to the relation Element, named PS to store path signa-tures for
elements. For the path appearing in the query, we first compute its
signature:

s = sletter ∨ sbody ∨ spara = 011001111111.

Then, we transform the sample query into the following form:
select *
from Element x, Text y
where x.Ename = �para� and x.PS matches s

and x.docID = y.docID
and x.ID = y.parentID and y.value Ê �visit�;

where �matches� is a function to do the signature checking as de-
scribed above. From this example, we can see that the path signature
can be used to reduce the amount of tuples to be searched in relation
Text. It works like a filter to eliminate non-related elements as many
as possible. However, due to the �false drops�, it is possible that al-
though the path signature of an element matches a query path signa-
ture, the corre-sponding path is not the path appearing in the query.
Therefore, an extra step is needed to check those paths whose path
signature survives the signature checking, which may delay the re-
sponse time.

Another problem is that some elements may share the same path
(e.g., the multiple appearance of �para� element in the tree for the
document shown in Fig. 3(a)) and thus the same path signature, which
will be redundantly stored as the values of �PS� attribute. This prob-
lem can be removed by storing all the distinct path signatures in a
separate file Fps and establish a hidden attribute (named �pointer�) in
the relation Element to store the pointers to the positions of the path
signatures in Fps. In this setting, the above query can be changed into
the following form:

Search the path signature file Fps to find positions whose signature
matches s;

Let Sps be the set of the resulting positions;
select *
from Element x, Text y
where x.Ename = �para� and x.pointer in Sps

and x.docID = y.docID
and x.ID = y.parentID and y.value ⊇ �visit�;

To mitigate the first problem mentioned above to some extend,
we do not store the path signatures simply in a file, but organize them
into a tree structure, the so-called pat-tree to find the matching path
signatures quickly. We discuss this issue below.

Combining Pat-Trees with Path Signatures
In this subsection, we show how to speed-up the path signature

scanning.
As in traditional databases, we want to establish index over path

signatures just as a B-tree over a primary key attribute. Unfortunately,
due to the fact that signatures work only for an inexact filter, the
comparison-and-branching mechanism used in a B-tree can not be
utilized to build an index tree structure for signatures. As an counter
example, consider the following simple binary tree, which is con-
structed for an Element relation containing only three tuples.

Assume that s = 000010010100 is a signature to be searched.
Since s1 > s, the search will go left to s2. But s2 does not match s. Then,
the binary search will return a �nil� to indicate that s can not be found.
However, in terms of the definition of the inexact matching, s3 matches
s. For this reason, we try another tree structure, the so-called pat-tree
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Figure 6: A counter example

as the index over path signatures, and change its search strategy in
such a way that the behavior of signatures can be modeled. In the
following, we discuss how to establish an index for path signatures
using pat-trees.

Pat-tree is a digital (binary) tree, by which the key words (or
representative words) is represented as a sequence of digits. During a
traversal of a pat-tree, the individual bits of the key words are used to
decide on the branching.

Now we consider each path signature as a digit sequence for a key
word and construct a pat-tree for a path signature file as discussed in
[Mo68, Kn73].

For example, for the apth signature file shown in Fig. 7(a), we
first transform it into a graph shown in Fig. 7(b) (which can then be
translated into a tree structure, call a pat-tree; see below)

The graph shown in Fig. 7(a) consists of a header and n - 1 = 8 -
1 = 7 nodes. Each node contains six fields:
� Pointer to a signature in the path signature file.
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011 001 000 101
111 011 001 111
111 101 010 111
011 001 101 111
011 101 110 101
011 111 110 101
011 001 111 111
111 011 111 111

Figure 7: Pat-tree

In Fig. 7(b), P(x) (where x is an order number of a path signature)
shown within each node is a pointer to a path signature, e.g., by P(4),
the 4th signature in the path signature file is referred.
� LLINK and RLINK: pointers within the graph. (LLINK is always

labeled with 0 and RLINK is always labeled with 1.)
� LTAG and RTAG: one-bit fields which tell whether or not LLINK

and RLINK, respectively, are pointers to sons or to ancestors of the
node. The dotted arcs in Fig. 7(b) cor-respond to pointers whose
TAG bit is 1.

� SKIP: a number which tells how many bits to skip when searching, as
explained below. The SKIP fields are shown as numbers within each
node of Fig. 7(b).

The graph shown in Fig. 7(b) can be represented as a tree by
splitting each node into two ones as shown in Fig. 8. That is, each
pointer to a signature is separated from the correspond-ing node.
There is an arc from a node v to a separated pointer node u (corre-
sponding to a pointer to a signature) if there is an ancestor link (dotted
arc) from v to a node containing u in the original graph.  In Fig. 8, the
node labeled with A will be split into two nodes connected with a dotted
line marked with A� and the node labeled with B will be split into two
nodes connected with a dotted line marked with B�.
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In this way, the graph shown in Fig. 7(b) can be transformed into
a tree structure as shown in Fig. 9(a).

Note that in the tree shown in Fig. 9(a), each path from the root
to a leaf node corresponds to a prefix of a path signature and the value
of that leaf node is its address in the path signature file. Therefore, to
check whether a path signature is in a signature file, we simply go along
a path and by each node encountered the corresponding bit in that
path signature will be checked to decide to go left or right. When a leaf
node is reached, the path signature will be checked against the signa-
ture pointed by the leaf node.
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Figure 9: Signatures, path signatures and pat-tree

Note that in the tree shown in Fig. 7(a), each path from the root
to a leaf node corresponds to a prefix of a path signature and the value
of that leaf node is its address in the path signature file. Therefore, to
check whether a path signature is in a signature file, we simply go along
a path and by each node encountered the corresponding bit in that
path signa-ture will be checked to decide to go left or right. When a
leaf node is reached, the path signature will be checked against the
signature pointed by the leaf node.

To decide whether some of the signatures in a path signature file
�match� a given signature, more time is need. Let sq be the path
signature to be searched. The i-th position of sq is denoted as sq (i).
During the traversal of a pat-tree, the inexact matching is defined as
follows:
(i) Let b be the node (in the pat-tree) encountered and sq (i) be the

position to be checked.
(ii) If sq (i) = 1, we move to the right child of b.
(iii) If sq (i) = 0, both the right and left child of b will be visited.

In fact, this definition just corresponds to the signature matching
criterion.

Example 4 Assume sq = 011 111 110 101. Then, the path marked
with dotted edges in Fig. 7(a) will be searched. The bit positions of sq
that will be checked are 1st, 7th (1 + 6 = 7), 4th (1 + 6 - 3 = 4) and 5th
(1 + 6 - 3 + 1 = 5), respectively. In the case that sq = 000 100 100 000,
part of the pat-tree (marked with thick edges in Fig. 7(b)) will be
searched. On reaching a leaf node, the path signature pointed by the
leaf node will be checked against sq. Obviously, this process is much
more efficient than a sequential searching. If the signature file con-
tains N signatures, this method requires only O(N/2l) comparisons in
the worst case, where l represents the number of bits set to 1 in sq since
each bit set to 1 in sq will prohibit half of a subtree from being visited.

IMPLEMENTATION AND EXPERIMENTS
The path signature concepts have been implemented in a re-

search project aiming at lightweight and efficient XML storage and
retrieval in Java. The storage component PDOM[HMF99] stores XML

documents in a binary file format which offers random access to indi-
vidual document nodes. Applications access and manipulate these files
via the Java DOM (Document Object Model) API, a standard recom-
mendation of the W3C [W3C98c]. The DOM allows to represent
XML documents as a hierarchical structure which consists of different
node types representing elements, attributes, or text sections, which
offer generic navigation methods and type specific data access and
manipulation methods. The PDOM component maps transparently
between persistent file data and corresponding DOM objects. It loads
and instantiates DOM objects on demand from file, updates the file for
modified objects, and caches frequently accessed objects.

The query processor implements XQL as described in [RLS98]. It
operates on any Java DOM implementation, but is in addition able to
exploit the path signatures provided by our PDOM implementation.
Query evaluation is based on a top-down, preorder traversal of the
document trees. The top-down approach requires a slightly different
path signature encoding. Instead of computing an element�s path sig-
nature from the parent/ancestor signatures (bottom-up), its path sig-
nature is constructed (recursively top-down) from its children/descen-
dants. These signatures allow to prune unnecessary subtree traversals
as follows. Before traversing the children of an element, the processor
performs a signature test. If the element�s path signature matches the
query�s path signature, the children are visited, otherwise they needn�t
be considered any further. 17 bits as attribute signature. For simplicity,
attribute signatures have not been discussed in the previous sections as
they work in the same way as the path signature concept. All the path
sig-natures are organised as a pat-tree, stored in a file.

Now we present some benchmark numbers for typical queries
against a large XML document. We have compared an OODBMS based
XML store (OODB) with XQL query processor, and �Infonyte�, the
commercial version of our PDOM and XQL processor, by which the
technique described in the previous sections are employed. The tests
against Infonyte were performed with enabled cache (IE) and disabled
cache (ID). All systems run on a machine with the following configu-
ration:

Dell Poweredge 6300.
4 × Intel Xeon Pentium III (500 MHZ).
1 GB RAM.
4 × 9GB Harddisk.
The OODBMS was configured with 64MB internal in-memory

cache, and the Java virtual machine used to run Infonyte is the HotSpot
engine that comes with JDK 1.3 from SUN.

The path signatures are stored as longs (64 bits) and thus allow for
very efficient signature tests via built-in bit operations on longs. 47
bits of the signature are used as element signature and Jon Bosak. The
document uses 7.65 Mbyte file space in textual format. It consists of
180,000 elements and a total number of 327.000 DOM nodes.

The following XQL queries are used for the test:
Q1. /WILLIAM/PLAY/TITLE
Q2. //PLAY/TITLE
Q3. //TITLE
Q4. //LINE
Q5. //PLAY[TITLE=�The Tempest�]//

SPEECH[SPEAKER=�Lord�]
Q6. //PLAY//INDUCT//SPEECH[//SPEAKER=�Lord�]
Q7. //PLAY[//PROLOGUE//SPEAKER=�Chorus�]/TITLE
Q8. //PLAY[//INDUCT//SPEECH[//SPEAKER=�Lord�]]

/TITLE
The test results are summarized in Table 1.
Queries Q1-Q4 are simple path queries which return <TITLE>

elements in <PLAY> elements (Q1, Q2); all <TITLE> elements in-
cluding <ACT> titles and <SCENE> titles (Q3); and all <Line> ele-
ments Q5 returns all <SPEECH> elements where the speaker is �Lord�
within the play whose title is �The Tempest�, which is in fact an
abbreviated form of the following search condition:

//PLAY[TITLE=�The Tempest�] and
//PLAY/TITLE//SPEECH[SPEAKER=�Lord�]
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Query OODB ID IE 

Q1 40 110 <1 

Q2 50 280 1 

Q3 640 2200 50 

Q4 28800 3500 810 

Q5 340 310 28 

Q6 60 73 3 

Q7 1700 230 2 

Q8 1800 200 3 

 

Table 1: Query execution time (ms.)

Queries Q6-Q8 are more complicated path queries which refer to
elements <INDUCT> and <PROLOGUE> that occur infrequently.

Generally, our Infonyte system can compete with the OODB,
even with caching disabled. Especially Q4 shows the impact of the
cache used by the OODB. The large amount of <LINE> elements
(170.000) which are the result of this query do not fit into its cache
and lead to an enor-mous performance decrease. With caching en-
abled, Infonyte outperforms the OODB system at least by a factor of
10.

The execution time for queries Q1-Q4 shows that OODB and
Infonyte optimization strategies behave similarly for simple path que-
ries. For the complex path queries Q5-Q8, however, exe-cution time
differs significantly. For these queries, our query processor can avoid
processing of large, irrelevant subtrees by performing path signature
tests, which can seen from Infonyte�s uncached evaluation time of
queries Q2 (280ms) and Q7 (230ms). Q7 can be thought of as a
re-finement of Q2 where the filter �[//PROLOGUE//
SPEAKER=�Chorus�]� needs to be evaluated for each <PLAY>
element�s subtree. But before the query processor traverses these trees,
it can perform a signature test. This test fails often, as only 5 of 37
<PLAY> elements contain a <PROLOGUE> element. For these re-
maining 5 elements, the subtree needs to be loaded to evaluate the
filter expression. Only 2 <PLAY> elements match this filter expres-
sion and are processed further, which finally returns their <TITLE>
element.

CONCLUSION
In this paper, a document management system is introduced.

First, the system architecture and the document storage strategy have
been discussed. Then, a new indexing technique: path signature has
been proposed to speed up the evaluation of the path-oriented queries.
On the one hand, path signatures can be used as a filter to get away
non-relevant elements. On the other hand, the technique of pat-trees
can be utilised to establish index over them, which make us find rel-
evant signatures quickly. As shown in our experiment, high perfor-
mance can be achieved using this technique.
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