
Issues and Trends of IT Management in Contemporary Organizations 53

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ABSTRACT
We show how events can be modeled in terms of UML. We view events as change agents that have consequences and as information objects
that represent information. We show how to create object-oriented structures that represent events in terms of attributes, associations,
operations, state charts, and messages. We outline a run-time environment for the processing of events with multiple participants.

Event Modeling in UML
Lars Bækgaard

Department of Computer Science, Aalborg University, Fr. Bajers Vej 7E, DK-9220 Aalborg Øst, Denmark
Tel: +45 9635 8080, lars@larsbaekgaard.com

INTRODUCTION
Events are atomic occurrences (Jackson 1981). They are change

agents that have consequences and they are information objects that
represent information (Bækgaard 2001). When a customer order is
received packing, shipping, and billing events may be triggered and
information about the order may be recorded and stored in a data
warehouse. When a book is borrowed in a library a recall event may be
triggered 30 days later and information about the state of library books
may be recorded and stored in a database.

Many existing approaches to object-oriented event modeling rec-
ommend that events should be objectified. Anderson (2000) uses event
objectification as the basis for event patterns. Aarsten (1996) uses
event objectification as the basis for reactive systems. Ran (1995) uses
event objectification as the basis for event-driven systems.

We outline a method that supports the modeling of real-world
events in terms of UML (Rumbaugh et al. 1999). We show how to
create object-oriented structures that represent events in terms of
attributes, associations, operations, state charts, and messages. Our
approach is based on event objectification but unlike other approaches
it is based on an event model where events are viewed as both change
agents and information objects.

In Section 2 we introduce the event model on which our work is
based. In Section 3 we use attributes and associations to model infor-
mation about events and their participants. In Section 4 we use object
operations and state charts to model the consequences of events. In
Section 5 we use messages to model the occurrence of events. Section
6 we outline a run-time environment that ensures that no event is
accepted unless each participant admits it. In Section 7 we conclude
the paper.

EVENTS
Our event model is based on the event-entity-relationship model

in which events have participants, descriptive properties, and conse-
quences (Bækgaard 1999, Bækgaard 2001). A borrow event in a library
may have a borrower and a book as participants. The event may have
descriptive properties like date. And as a consequence of the event the
status of the book may be changed to �borrowed�.

We use expressions on the form �Name [Participants] (Proper-
ties)� to define individual events. The element �Participants� repre-
sents the participants of the event. The element �Properties� repre-
sents the descriptive properties of the event. For example, the event
expression Borrow [Borrower1, BookItem4] (September 29, 2001) may
represent the fact that Borrower1 and BookItem4 have participated in
a Borrow event on September 29, 2001.

We use expressions on the form �Name [ParticipantTypes]
(PropertyTypes) {Consequences}� to define event signatures. An event
signature defines a type of conforming events. The element
�ParticipantTypes� defines the types of participants that can partici-
pate in events of the defined type. The element �PropertyTypes�
defines the types of properties of events of the defined type. The
element �Consequences� represents the action that is initiated when
an event of the defined type occurs. The notation used to specify

�Consequences� may be chosen freely to suite the requirements of the
operational environment.

Inherent consequences are strongly coupled to an event in the
sense that they are defining characteristics of the event. For example,
a library book changes status from �available� to �borrowed� when it
is borrowed. This change of status is a defining characteristic of what
it means to borrow a library book. Triggered consequences are loosely
coupled to an event in the sense that they are not defining character-
istics of the event. For example, a return-monitor activity may be
triggered when a book is borrowed. The monitor activity is not a
defining characteristic of borrow events. It defines a book recall policy
in the library.

An event expression conforms to a signature expression if it has
the same name as the signature and if its participants and properties
conform to the participant and property types of the signature. For
example, the event expression Borrow [Borrower1, BookItem4] (Sep-
tember 29, 2001) conforms to the signature expression Borrow [Bor-
rower, BookItem] (Date) {�}.

INFORMATION ABOUT EVENTS
We use attributes and associations to model information about

events.
We define an event class for each event type and we define a

participant class for each participant type. The properties of the
event type are represented by attributes on the event class. Event-
related attributes of the participants are represented by attributes on
the participant classes. We associate the event class with each partici-
pant class. The associations are used to represent participation in
events.

We have used the signature expressions Borrow [Borrower,
BookItem] (Date) {�} and Borrow [Borrower, BookItem] (Date) {�} to
define the attributes and associations in the class diagram in Figure 1.

Each Book object represents one library book. Each Borrower
object represents one library borrower. Each Borrow object represents
one borrow event. Each Return object represents one return event.
Each Borrow and Return object has an attribute called Date that con-
tains the occurrence date of the corresponding event.

Return

Date

New ()

Borrow

Date

New ()

Book

Number

Borrow ()

Return ()

Borrower

Number

Borrow ()

Return ()

Figure 1: Library class diagram

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4115
IDEA GROUP PUBLISHING

54 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

The association between Borrow and Book/Borrower represents
the fact that books/borrowers may participate in borrow events. The
association between Return and Book/Borrower represents the fact
that books/borrowers may participate in return events.

CONSEQUENCES OF EVENTS
We use operations and state charts to model the inherent and

triggered consequences of events.
When we model inherent consequences we define an operation

called New on the event class. This operation creates a new event
object with initialized attribute values (event properties) and sends
messages to participation objects and activity objects (see Section 5).
Also, we define an event operation on each participant class. Each of
these operations handles a part of the inherent consequences that
involves a specific participant.

In Figure 1 we have added an operation called New to the event
classes Borrow and Return and we have added two operations called
Borrow and Return to the participant class Borrower and Book.

Triggered event consequences may not be related directly to a
specific participant. In such cases we define a new activity class whose
objects are responsible for the activity. In some cases we supplement
the operations of the objects with a state chart.

In Figure 2 we have modeled an activity that handles the recall of
library books that are returned too late. The activity class Monitor is
associated with the event classes Borrow and Return. A new Monitor
object is instantiated each time a book is borrowed. The object is
terminated if the book is returned within 30 days. Otherwise, a Recall
message is activated before the object is terminated. NewDay is a
message that is sent automatically on time each day.

EVENT OCCURRENCES
We use messages to represent event occurrences.
For each event signature we define a rule that transforms con-

forming event expressions into a set of messages that are send to the
event object, to the participant objects, and to the activity objects.

Name [x1, �, xn] (y1, �, ym) {�}:
 Name [x1, �, xn] (y1, �, ym) ®

Name.New (� parameters �)
x1.Name (� parameters �)
�
xn.Name (� parameters �)
z1.Name (� parameters �)
�
zk.Name (� parameters �)

Each transformation rule defines the messages that must be send
when an event of the corresponding type occurs. One message is send

Return

Date

New ()
Return

Borrow
Monitoring

NewDay [> 30 days ?] Recall
Monitor

Borrow ()
Return ()

NewDay ()
Recall ()

Borrow

Date

New ()

Figure 2: Book loan monitor

to the event object (Name). One message is send to each participant
object (xi). One message is send to each activity object (zj). The pa-
rameters is a subset of {x1, �, xn, y1, �, ym }. In some cases additional
parameters may be needed.

The following example is based on Figure 1 and the event signa-
ture Borrow [Borrower, BookItem] (Date) {�}.

Borrow [Borrower, BookItem] (Date) {�}:
 Borrow [Borrower, BookItem] (Date) →

Borrow.New ()
Borrower.Borrow ()
Book.Borrow ()
Monitor.New ()

Each borrow event occurrence is represented by four messages to
objects in Borrow, Borrower, Book, and Monitor.

RUN-TIME ENVIRONMENT
State charts can be used to define the dynamics of state-depen-

dent objects that may refuse to respond to certain messages when they
are in certain states (Rumbaugh et al. 1999). For example, state charts
can be used to model object life cycles (Bækgaard 1997, Bækgaard &
Godskesen 1998, Jackson 1983) and they can be used to model activity
objects as described in Section 4.

Each occurring event is transformed to a set of messages as de-
scribed in Section 5. However, one or more state-dependent objects
may refuse to respond to one of the generated messages. In such
situations the event should be refused as whole.

As indicated by Figure 3 event requests must be controlled before
they are admitted.

Rejected event

enabled event
Event processorEvent control

event request

Figure 3: Events and event control

The following algorithm is executed each time an event is re-
quested. We have assumed that the rules embedded in state charts are
the only rules that may result in the rejection of event requests.
1. Create object messages as described in Section 5;
2. For each state-dependent participant object:

2.1. Lock the object;
2.2. IF the corresponding state machine does not enable the message
THEN reject the event request;

3. Send the created messages to the corresponding objects;
4. Release all locked objects.

Issues and Trends of IT Management in Contemporary Organizations 55

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

This event control mechanism is similar to integrity checking in
database transaction systems if we view the rules embedded in state
charts as integrity rules. Like atomic transactions, events are atomic
�all-or-nothing� processes.

CONCLUSION
We have outlined a method for event modeling in UML. The

method is based on an event model where events have participants,
properties, and consequences.

We use attributes and associations to model information about
events. We use operations and state charts to model the consequences
of events. We use messages to model occurrences of events. A run-
time environment ensures that an event is rejected unless all state-
dependent participants admit it.

Based on our experiences we conclude that UML supports the
modeling of information about events in a coherent and integrated
way. All the relevant information about an event type can be modeled
as an event class that is associated with its participant classes. We are
less satisfied with the way UML supports the modeling of the conse-
quences of events. Such consequences must be defined in a fragmented
manner because of the distributed process paradigm that underlies the
object-oriented paradigm.

Future work includes extensions to UML that supports the mod-
eling of event consequences in a non-fragmented manner.

REFERENCES
Aarsten, A. et al. (1995). Object-Oriented Design Patterns in Reactive

Systems. In (Vlissides et al. 1996).
Anderson, F. (1999). A Collection of History Patterns. In (Harrison et

al. 2000).
Bækgaard, L. (1997). Transaction-Based Specification of Database Evo-

lution. 16th International Conference on Conceptual Modeling
(ER�97), Los Angeles, California, USA.

Bækgaard, L. & J. C. Godskesen (1998). Real-Time Event Control in
Active Databases. Journal of Systems and Software 42(3): 263-271.

Bækgaard, L (1999). Event-Entity-Relationship Modeling in Data Ware-
house Environments. International Workshop on Data Warehous-
ing and OLAP (DOLAP�99), Kansas City, USA, November 6, 1999.

Bækgaard, L. (2001). Event Modeling. In (Rossi & Siau 2001).
Coplien, J.O. & D.C. Schmidt, eds. (1995). Pattern Languages of Pro-

gram Design. Addison-Wesley.
Harrison, N. et al., eds. (2000). Pattern Languages of Program Design 4.

Addison-Wesley.
Jackson, M. (1983). System Development. Prentice-Hall.
Ran, A.S. (1994). Patterns of Events. In (Coplien & Schmidt 1995).
Rossi, M. & K. Siau, eds. (2001). Information Modeling in the New

Millennium. Idea Group Publishing.
Rumbaugh, J., et al. (1999). The Unified Modeling Reference Manual.

Addison-Wesley.
Vlissides, J.M. et al., eds. (1996). Pattern Languages of Program Design

2. Addison-Wesley.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/event-modeling-uml/31714

Related Content

Classification Reasoning as a Basic Part of Machine Learning
Xenia Naidenova (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 114-

121).

www.irma-international.org/chapter/classification-reasoning-as-a-basic-part-of-machine-learning/112321

Centrality Analysis of the United States Network Graph
Natarajan Meghanathan (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

1746-1756).

www.irma-international.org/chapter/centrality-analysis-of-the-united-states-network-graph/183891

GPU Based Modified HYPR Technique: A Promising Method for Low Dose Imaging
Shrinivas D. Desaiand Linganagouda Kulkarni (2015). International Journal of Rough Sets and Data

Analysis (pp. 42-57).

www.irma-international.org/article/gpu-based-modified-hypr-technique/133532

The Role of Case-Based Research in Information Technology and Systems
Roger Blake, Steven Gordonand G. Shankaranarayanan (2013). Information Systems Research and

Exploring Social Artifacts: Approaches and Methodologies (pp. 200-220).

www.irma-international.org/chapter/role-case-based-research-information/70717

BitTrace: A Data-Driven Framework for Traceability of Blockchain Forming in Bitcoin System
Jian Wu, Jianhui Zhangand Li Pan (2024). International Journal of Information Technologies and Systems

Approach (pp. 1-21).

www.irma-international.org/article/bittrace/339003

http://www.igi-global.com/proceeding-paper/event-modeling-uml/31714
http://www.irma-international.org/chapter/classification-reasoning-as-a-basic-part-of-machine-learning/112321
http://www.irma-international.org/chapter/centrality-analysis-of-the-united-states-network-graph/183891
http://www.irma-international.org/article/gpu-based-modified-hypr-technique/133532
http://www.irma-international.org/chapter/role-case-based-research-information/70717
http://www.irma-international.org/article/bittrace/339003

