
908�� • Managing Information Technology in a Global Economy

ABSTRACT
Among the existing E-Commerce applications, online auc-

tions are the most influential ones. Their impact on trading in
the B2B (business to business) as well as in the B2C (business to
consumer) and C2C (consumer to consumer) areas will be in-
evitable. This article describes the architecture of a web-based
realtime online auction system, together with the functional and
technical requirements that evolved during the development pro-
cess and heavily influenced the architecture. From the point of
view of this real world case study, ways to minimize the devel-
opment time and yet ensure a robust and flexible system are
explained: combining standard software and self-developed com-
ponents, reusing code wherever possible, and employing the
eXtreme Programming approach and its test concepts.

1. INTRODUCTION
Electronic commerce will be the enabling technology for

the next industrial revolution. Virtual, Internet-based markets
allow completely different forms of trading [Höller et. al., 1998].
Local, therefore sometimes monopolistic markets become glo-
bal and more competitive. The Internet offers a number of dif-
ferent markets. Sellers may advertise, consumers and industrial
purchasers can distribute their demands via the Internet. One of
the highly compelling and competitive trading forms is based on
online auction systems. Auctioning is among the most efficient
and fastest concepts to achieve fair prices and identify the opti-
mal business partner. Several forms of auctions allow purchas-
ers to bid for goods and services. Reverse auctions allow suppli-
ers to bid for supplying contracts. Auction forms range from
long-term auctions of approx. 4 weeks to short-term auctions of
approx. 1h on invitation basis. Auctions may run simultaneously
and depend on each other. Multi-phase auctions admit the bid-
ders to the next round only if they hit a certain target price in the
previous round. Multi-round biddings enforce one bid per round
from each bidder [Prince, 1999].

In running Internet auctions, it became increasingly ap-
parent that the auctioneer must be an independent instance. Only
if such an independent auctioneer exists, both supplier and buyer
have enough confidence in the fairness of the auction process.
The experiences with other marketplaces have shown in an ap-
parent way that an auction marketplace is not very successful
when operated by the buyer or seller themselves.

Furthermore, it became obvious that identifying auctionable
goods and materials is not an easy task. Therefore, it is a com-
mon way to charge a consultant to define the actual auction set-
up, starting with the identification of the demands and possible
suppliers. On the other hand, it also turned out that it is rather
irrelevant to have large supplier lists at hand, because compa-
nies that buy material in industrial sizes usually know the their
probable suppliers beforehand. They look at the suppliers’ situ-
ation and they want certification which proves the suppliers’
capability of delivering high quality material in time.

In addition to the great variety of possible auction forms,
the development of online-auction systems – other E-commerce
applications alike – faces particularly tight and often contradict-
ing requirements: the system has to be easy to use, fast, robust,
and secure. Even though the field of E-commerce is highly in-
novative, to our knowledge (state December 2000) no existing
online auction system provides all the functionality character-
ized above [Glänzer, Schäfers, 2000], [Grebe, Samwer, 2000],
[Wahrenberg, 2000]. This paper presents a framework for short-
term online auctions running in real-time, supporting a multi-
tude of different auction forms, and explains our development
process. After two phases of intensive elaboration,
www.emporias.net is now under operation.

In the course of the software development process the re-
quirements were gradually comprehended and considerably
evolved. Thus, an approach based on eXtreme Programming
elements [Beck, 1999] was used to develop the software. This
paper overviews the results of this development. The XP ap-
proach was the only process that allowed us to develop the busi-
ness model and the software in parallel, because XP provides
enough flexibility to efficiently react to evolving requirements.

Section 2 summarizes the functional and technical require-
ments that evolved during the software development process. In
Section 3 some central elements of the resulting software archi-
tecture are presented. Section 4 summarizes the experiences
made during the software engineering process for the particular
E-commerce application, now online under www.emporias.net
(see Figure 1).

2. REQUIREMENTS
The product requirements were initially not clear and

changed during the project in several major evolutionary steps.
This section neither reflects the initial requirements set, nor their
history, but a summary of the most recent state of the require-
ments, which determined the architecture we describe. We dis-
tinguish between functional and technical requirements on the

A Framework for Realtime Online Auctions
Bernhard Rumpe, Guido Wimmel

Software & Systems Engineering, Munich University of Technology, 80290 Munich, Germany
Phone: +49 (89) 2 89-2 83 62, Fax: +49 (89) 2 89-2 53 10

rumpe | wimmel @in.tum.de, http://www.emporias.net/

Figure 1: Homepage of Emporias.net

This paper appears in Managing Information Technology in a Global Economy, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2001, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

2001 IRMA International Conference • 909

software as well as methodical requirements on the software
engineering process.

Overall, a lot of common issues encountered in software
engineering for web applications can be seen at this example:
flexibility, ease of use and a large variety of functionality are
usually demanded for on the one hand, but many constraints
have to be faced from the technical side, such as security, per-
formance, robustness and compatibility.

2.1 Functional requirements
The following list describes the most important functional

requirements that evolved during the system development:
1. The software is to be designed for online auctions, both the

normal English format and the reverse format, thus allowing
to auction goods among buyers and demands among suppli-
ers.

2. An intuitive graphical user interface is to be offered, that
must be accessible through the web without any installation
necessary.

3. The auctions shall be running in real-time. This means that
clients always have current information visible. This is im-
portant for short time auctions, where the frequency of bids
is relatively high.

4. An auction may consist of several slots, allowing the buyer
to split the material desired among several suppliers. This
allows to prevent a dependency on a single supplier only, as
well as to split delivery.

5. Different auctions may depend on each other. For example,
depending on the results of simultaneous auctions, the buyer
purchases percentages of competing materials.

6. Persons may participate in an auction in different roles: the
auctioneer, the bidders, the originator of the auction (buyer
in reverse auctions, seller in the normal auctions), and guests
shall be admitted.

7. Different roles get different information at hand. Only the
auctioneer can co-relate the bids to their bidders during the
auction. Bidders appear to each other anonymously, but know
how many competitors there are. Furthermore, bidders see
their ranking. External observers following the auction see
percentage values instead of real currency.

8. Reverse auctions may have a historic and a target value. The
historic value describes what the buyer paid for the auction
goods so far, whereas the target value describes what he would
like to pay this time. If the auction result hits the target value
then the buyer is obliged to sign the contract. If the target
prize is not hit the buyer is free to choose.

9. The auction times may vary. Very short auctions may have
an auction time as short as 15 minutes. Typical auction times
are 1-3 hours, consisting of a main part and an extension
part.

10.The auction time is extended whenever a bid arrives shortly
before the auction end. This allows all other bidders to re-
act. The provided reaction time may vary, e.g. starting from
3 minutes as an initial extension down to a few seconds at the
very end.

11.A login mechanism is imperative. Passwords are distributed
through safe channels, among them PGP encrypted emails
or SMS.

12.A report on the auction result is provided for all participants.
For an efficient, correct and robust operation of the auc-

tion system, some additional functional requirements emerged
as necessary:

1. Both auctioneer and customer shall be able to define auc-
tions themselves. This includes inviting suppliers and defin-
ing the access rights and auction format, and shall be handled
through the Internet.

2. As auctions are closed (meaning by invitation only), it should
be possible to expel participants from a running auction, in
case they disregard the rules.

3. For internal administration, a database interface is to be pro-
vided (e.g. via the Microsoft Access graphical user inter-
face), and statistical reports are necessary to allow keeping
track.

2.2 Technical requirements
Whereas in the functional requirements section, require-

ments and their motivation were discussed, we now give a short
summary of technical requirements, and their implications on
system architecture:
1. The software shall be downloaded from the Internet without

any separate installation being necessary, and should run on
currently common hardware and operating systems. Together
with the requirement of an active, up-to-date graphic user
interface, a Java applet running inside a browser is the best
choice.

2. Software shall run even with a low-bandwidth Internet con-
nection, such as a phone line. On the one hand, the down-
loading time and therefore the size of the applet must be
small, which excludes the use of complex frameworks. On
the other hand, it is necessary to use a very efficient proto-
col, excluding Corba or DCOM. Even RMI and XML-RPC
proved critical.

3. High security standards are crucial. Any kind of data disclo-
sure or manipulation must be prevented. SSL is the best
choice, being supported by common browsers.

4. Privacy. The server is responsible for not revealing any in-
formation to any auction participant that the participant is
not allowed to see.

5. In short term auctions, the synchronization of client and server
times is essential. An appropriate protocol must ensure that
the server does not close the auction if a participant still be-
lieves it is open. A two-phase dynamic protocol is used for
this purpose in our system.

6. The server must be robust with respect to any possible oc-
curring failures.

7. Consistency of the auction data must always be ensured. This
makes it necessary to use a robust industrial standard data-
base (Oracle) and define a suitable number of plausibility
checks.

8. The realization of the web contents shall be as simple as
possible. No extra gadgets, but a full concentration on func-
tionality and user comfort. Of the current technologies for
dynamic web pages, the JSP (Java Server Pages) technology
supports straightforward development and fits very well into
our Java-based architecture.

2.3 Requirements on Software Engineering Process
Due to the innovative character of the E-commerce field,

several tough requirements for the engineering process apply.
For once, E-commerce enforces a high quality of the system.
Correctness of the functionality, robustness of the implementa-
tion and high security standards are inevitable if money is in-
volved. On the other hand, the current E-commerce develop-
ment leads to constant evolution and refinement of requirements.
The classic software engineering development processes can-

910�� • Managing Information Technology in a Global Economy

not fully cope with instability of customer wishes and state-of-
art functionality.

Thus the only appropriate choice was to use a process based
on the eXtreme Programming approach [Kent, 1999]. Very short
development cycles with weekly releases within the first phase
have been very useful. Due to strongly evolving requirements, it
is necessary to have an evolution process for the software as
well strictly enforcing automatic tests for all important methods
and all functionality cases. This is the only way to ensure the
high quality of the system.

3. ARCHITECTURE
Based on the evolution of the above mentioned require-

ments during the project a stable architecture evolved. We de-
scribe central elements of the architecture of our online auction
system, and explain how it fits the requirements discussed in
Chapter 2. With our architecture, we developed a well-working
compromise for all (partially conflicting) requirements. Further-
more, its concepts can now also successfully be applied to other
systems in the field of E-commerce.

3.1 Overview
An overview of the system architecture is depicted in Fig-

ure 2. It shows one instance per component only, therefore be-
ing a conceptual deployment diagram.

The core auction system consists of a number of interact-
ing software components, that together make it possible to con-
duct, administrate and evaluate online auctions. Like in other
web-based E-commerce applications, it is important that the data
(auction data, participants, bids etc.) is used consistently through-
out the components, that (secure) communication using Internet
standards is well supported and that the system is as flexible and
platform independent as possible. Therefore, we used Java
[Gossling et. al., 2000] as implementation language for most of
the system components, allowing for a common data model for
online auctions to be shared by these components. For reasons
of efficiency and robustness, Apache [Eilebrecht, 1999] was
chosen as web server to handle the secure communication with
the clients and to dispatch their requests to the respective com-
ponents behind the firewall. For the same reasons, the industry-
standard database Oracle was used to store the permanent data
about the online auctions to be conducted by the system. The
Java components can easily access this database via the JDBC
(Java database connectivity) interface [Hamilton et. al., 1997].

There are three ways for external interaction with the online
auction system:
§ A Java client applet, which runs inside the browser while the

user participates in the online auctions. The choice of Java,
and the fact that all necessary Java classes are downloaded
from the web server directly, ensures that the auction system
can be accessed from any computer without additional in-
stallation effort – all that is required is a browser that sup-
ports Java (version 1.1 upwards, e.g. Netscape Navigator =
4.5 or Internet Explorer = 4.0).

§ JSP pages allow users to view/administrate auction setups.
In contrast to other solutions for dynamic web pages like
ASP or PHP3, JSP (Java Server Pages) [Fields, Kolb, 2000]
can embed Java code. Therefore, the same data-model and
infrastructure, i.e. database interface, as for the Java server
software can be used.

§ HTML pages, simply providing information about the auc-
tion system and hyperlinks to the client applet and JSP pages.

Two additional interfaces are for internal use only. They
allow to administrate the database and to control and configure
the Java processes:
§ An auction control interface, which can only be used by the

auction administrator and makes it possible to control auc-
tions while they are running (e.g. to ban specific users, to
prolong or cancel an auction etc.). The auction control inter-
face was also implemented in Java and communicates with
the auction server directly.

§ A low-level database administration interface, allowing to
edit data in the database or to change the database structure.
For reasons of simplicity, Microsoft Access was used, which
can interface easily to an Oracle database using the ODBC
protocol.

The auction system itself consists of the following compo-
nents:
§ The Apache web server for communication between the other

components of the auction system and the users. For security
reasons, all communication between the users and the auc-
tion system is conducted using SSL. For this purpose, Apache
provides a very reliable, fast and robust SSL implementation
as a plug-in module. User requests arrive at the Apache Web-
Server, where they are directly processed or forwarded to
the respective component (i.e. the auction server or JSP-
Server). Apache provides the necessary functionality to handle
this dispatching, in particular the “mod_jserv” module to for-
ward the requests to the JSP server, and a special kind of
“rewrite rule” to forward the requests of the Java client applets
to the realtime auction server.

§ The realtime auction server is the central part of the system
and controls the online auctions. It reads auction data from
the database and cooperates with the Java clients to provide
them with dynamic information about the auctions, receives
their bids and ensures all bids are correctly displayed on the
computers of all other auction participants.

§ The JSP server, invoked by Apache to handle requests for
the dynamic JSP web pages to administrate auction data. The
standard JSP implementation Tomcat [Tomcat, 2000] was
used for this purpose.

§ The report generator, a Java-based program that accesses
the database, automatically creates auction reports (e.g. par-
ticipants, bidding curve, best bid and other statistics) and mails
them to the users.

§ The Oracle database, storing all the relevant permanent in-
formation about the auctions.

Figure 2:
Overall system
architecture

Browser

Apache / Firewall
(SSL handling / request dispatching)

Browser

ht
tp

s

ht
tp

s

ht
tp

s

DB
(Oracle)

Realtime Auction
Server (Java)

JSP Server
(Tomcat)

HTML
pages

JDBC

Auction system
Report generator

(Java)
JDBC

e-
m

ai
l /

 P
G

P

SMS/e-mail
notifications

HTML pages
(information)

JSP
(administration)

Browser

Java Client
(auction

participation)

Users / Auctioneer

2001 IRMA International Conference • 911

The conceptual system architecture given in Figure 2 shows
one instance of each process. In order to deal with dynamic
load-balancing, processes can be dynamically multiplied on dif-
ferent computers. Running the real auction server behind a num-
ber of Apache servers ensures that denial of service attacks are
not easy to conduct. An appropriate firewall and traffic monitor-
ing tool supplements the system architecture.

In the following, we will look at some system components
in more detail.

3.2 Oracle Database / Data Model
All information about the online auctions conducted by

the system, as well as current state and given bids are stored in
Oracle database. As an industry-standard database, Oracle en-
sures high reliability, robustness (via logging, recovery and trans-
action mechanisms), high performance and security (by provid-
ing elaborate concepts to protect data from unauthorized ac-
cess/modification). In addition, robust and well-tested interfaces
from the Oracle database to the other components of our system
are available through an Oracle implementation of the JDBC
interface.

Figure 3 depicts a core part of the data model of the online
auction system in form of a UML class model. [OMG, 1999].
Some of these classes like Person, Company and Auction are
straightforward. The class diagram also shows that an auction
can be split into several slots. Furthermore, several persons of
one company may even participate in the same auction having
different roles. Only one bidder per company is allowed but sev-
eral observers may observe what the bidder actually does. The
access rights allow a fine-grained definition of which person
has which rights to bid or observe which slot at a particular
time. Persons may submit as many bids as wanted. Bids are one
kind of messages that serves as a communication mechanism
between server and client and represent the events that hap-
pened during the dynamic execution of the auctions.

The data model of Figure 3 is implemented in Java classes
as well as the Oracle database. This allows a consistent use of
the data model or a subset thereof throughout the system.

In practice this data model is much more complicated. It
evolved during the development of the software, which was
greatly assisted by the XP Refactoring techniques [Fowler, 1999]

3.3 Realtime Auction: Client / Server
The most interesting part of the online auction system is

the Java client/server subsystem responsible for carrying out the
actual auctions. The client consists of a Java applet and runs
inside the Java virtual machine of a browser installed on the
user’s computer. All information about an auction is stored cen-
trally on the server responsible for that auction - the client merely

displays this information and notifies the server if it requests an
action (e.g. the user requests a new bid to be placed).

A particularly difficult issue was the time synchronization
over the Internet. Due to the rather unstable message delay in
the net, a full synchronization is not possible. However, we used
a two-phase protocol that ensured the useful average synchroni-
zation of client and server time. This includes time differences
of the local processor to the server, as well as an overcoming of
different time zones in different countries. Only server time is
relevant. Experience shows that at the official auction end, the
bid ratio is rapidly increasing. Therefore, the auction time is
extended up to three minutes to allow each single bidder to react
on incoming bids. Still, there is a definitive end, beyond which
no bidding is allowed. To ensure that all clients see the auction
closed at almost the same time, a two-phase closing protocol is
used.

As the client is running in a sandbox, imposed by the
browser, there is no chance for the server to directly connect
and update the client. Therefore, either the client keeps a chan-
nel continuously open or repeatedly asks the server for the new
information (“message request”). Unfortunately, most web
browsers today are not yet capable of continuously open SSL-
secured channels. For almost realtime information, a very short
repetition period is necessary (approx. 1 second). This leads to
increased traffic. To ensure continuous operation of the system,
even with many parallel auctions, the client/server protocol is
dynamized, based on a monitor measuring current traffic.

Figure 4 depicts a typical message exchange, denoted by
an extended UML sequence diagram. A block in this diagram
that essentially depicts a sub-sequence diagram and the middle
block shows the repetition and alternative paths.

3.4 The Basic Client/Server Protocol
Not to use any additional frameworks at the client side to

minimize download time and increase efficiency was an impor-
tant requirement. The only possibility to implement secure cli-
ent/server communication via SSL was to use the Java
URLConnection mechanism. This is because the implementa-
tion of the URLConnection class in the major browsers (Netscape
Navigator and Internet Explorer) already contains the neces-
sary SSL functionality - to activate it, the corresponding URL
has to begin with “https://”).

Therefore, the client/server communication is tunneled over
HTTPS. The RPC requests are marshaled by the client and en-
coded into a HTTPS POST message. Apache carries out the
necessary SSL handling and forwards the request to the Java.
The server performs the request and sends the result back to the
client, again via Apache.

Figure 3: Data Model

Company Auction

Person

*

1

Slot

*

1

AccessRights

Message

Bid

has-chair

1

*

**

1

*

:Client Server

registration

auction data

time synchronization

 message request | bid *

closing phase

Figure 4: Extended Sequence Diagram showing Main
Message Exchange

912�� • Managing Information Technology in a Global Economy

3.5 JSP
To allow easy administration, the online auction system

offers an interface for customers, as well as consultants to set up
auctions themselves. We chose to implement this functionality
via JSP (Java Server Pages), as this fits best into our Java-based
architecture and the same Java classes modeling the auctions as
in the auction server can be used by the JSP pages. According to
our auction model, an independent auctioneer ensures a fair
auction between the customer and the bidder. This auctioneer
gets full access to administrate the auction through the JSP-pages.
Behind each auction, there is a workflow model that ensures all
auction data a valid, invited bidders are only admitted after they
have signed the auction contract, and thereon. The auctioneer
can keep track of the status of each potential bidder before the
auction starts, e.g. selecting different ways of password trans-
fer.

4. SUMMARY OF EXPERIENCES WITH E-
COMMERCE ENGINEERING

As it is known, an Internet year lasts only three months.
Therefore, new systems have to be built quickly. E-commerce
deals with money, in our case with large amounts of money.
Therefore, a high-quality standard is inevitable. Rapidly chang-
ing requirements, that manifest and change on basis of existing
prototypes give a third driving force. These demands do not al-
low to use the standard software engineering processes with their
rather long development phases, and inflexibility. Therefore, we
applied a process with a large number of concepts taken from
the XP approach [Beck, 1999].

The XP approach goes right to the heart – namely the code.
Very short release cycles, no documentation overhead, repeated
refocusing on requirements, deep involvement of the customer,
and most importantly, the test suite together with existing
refactoring techniques characterize the XP approach as a light
software development method.

The developed test suites (65% of the code), almost en-
sure (sic!) that bugs are detected as soon as they are introduced.
The refactoring techniques [Fowler, 1999] allow a fast and effi-
cient evolution of the online auction system into its current ar-
chitecture. This example also shows that is not necessary to de-
fine an optimal architecture (in the sense of a class structure)
upfront.

The constant application of refactoring allowed us to re-
move unnecessary code, also, to omit all gimmicks in Html, JSP
and Java code. This kept the code clean, small and easy to re-
view.

Both the software and the business model have been de-
veloped in parallel. The high flexibility of the used software
development approach allowed us to develop both models in
parallel and, in particular, to incorporate the new business ele-
ments efficiently in the code.

Although we have concentrated on the code, we have used
the Unified Modeling Language (UML) to a large extent. Class
diagrams showed different portions of the server, client, data-
base and the JSP implementation. Extended versions of sequence
diagrams were used to clarify communication protocols. How-
ever, we also used the UML to develop tests: concrete scenarios
were denoted as object diagrams before they have been mapped
to code. Sequence diagrams have been used to describe com-
plex interactions between the code and test-drivers. The map-
ping of the latter diagrams into test-code was concluded manu-
ally, greatly assisted by our own testing framework, which was
adapted from JUnit [Beck, Gamma, 2000].

We expect that with appropriate UML-based tools, that
allow “constructive generation” of code from UML models as
well as generation of “test code” from other parts of the UML
models, we would still greatly benefit in engineering E-com-
merce applications – both in quality and time-to-market. Tools
for this purpose are in development.

ACKNOWLEDGEMENTS
We would like to thank our colleagues, who helped to de-

velop this software and its business model - in alphabetical or-
der: Samer Al-Hunaty, Julia Bodikova, Manfred Broy, Erich
Groher, Andreas Günzler, Robert Heinke, Carsten Jacobi, Klaus
Kaluza, Matthias Rahlf, Stefan Schifferer and Horst Wildemann.

LITERATURE
[Beck, 1999] K. Beck . Extreme Programming explained,

Addison-Wesley. 1999.
[Beck, Gamma, 2000] Test Infected: Programmers Love Writ-

ing Tests. See http://members.pingnet.ch/gamma/junit.htm.
2000.

[Eilebrecht, 1999] L. Eilebrecht. Apache Web-Server. MITP.
1999.

[Fields, Kolb, 2000] D. Fields, M. Kolb. Web-Development with
Java Server Pages. Manning Publications. 2000.

[Fowler, 1999] M. Fowler. Refactoring. Improving the Design of
existing Code. Addison-Wesley. 1999.

 [Glänzer, Schäfers, 2000] S. Glänzer, B. Schäfers: Auctainment
statt nur Auktionen. In: Events and E-Commerce. Peter F.
Stephan (Hrsg.). Springer, Berlin. 2000.

[Grebe, Samwer, 2000] T. Grebe, A. Samwer: Die dynamische
Entwicklung einer Internet Auktionsplattform. In: Events and
E-Commerce. Peter F. Stephan (Hrsg.). Springer, Berlin.
2000.

[Gossling et. al., 2000] J. Gossling, B. Joy, G. Steele, G. Brancha.
The Java Language Specification. Addison-Wesley. 2000

[Hamilton et. al. ,1997] G. Hamilton, R. Cattell and M. Fisher.
JDBC™ Database Access with Java™. A Tutorial and An-
notated Reference. The Java Series, Addison-Wesley. 1997.

[Höller et. al., 1998] J. Höller, M. Pils, R. Zlabinger: Internet
und Intranet. Auf dem Weg zum Elektronic Business. Springer,
Berlin. 1998.

[OMG, 1999] OMG Task Force. Unified Modeling Language
Specification 1.3. See http://cgi.omg.org/cgi-bin/doc?formal/
00-03-01. 1999.

[Prince, 1999] D. Prince. Auction this. Your Complete Guide to
the World of Online Auctions. Prima Publishing, Rocklin Cali-
fornia. 1999.

[Wahrenberg, 2000] Wahrenberg. Die Fußball WM-Börse:
Konzeption und Durchführung des weltweit größten
Börsenexperiments. In: Events and E-Commerce. Peter F.
Stephan (Hrsg.). Springer, Berlin. 2000.

[Tomcat, 2000] See http//:jakarta.apache.org/tomcat/. 2000.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/framework-realtime-online-

auctions/31694

Related Content

The Systems View of Information Systems from Professor Steven Alter
David Paradice (2008). International Journal of Information Technologies and Systems Approach (pp. 91-

98).

www.irma-international.org/article/systems-view-information-systems-professor/2541

Navigating Complex Systems Design with the PEArL Framework
Donna Champion (2016). International Journal of Information Technologies and Systems Approach (pp. 19-

31).

www.irma-international.org/article/navigating-complex-systems-design-with-the-pearl-framework/144305

An Insight Into Deep Learning Architectures
Nishu Garg, Nikhitha Pand B. K. Tripathy (2018). Encyclopedia of Information Science and Technology,

Fourth Edition (pp. 4528-4534).

www.irma-international.org/chapter/an-insight-into-deep-learning-architectures/184160

Ethics in Internet Ethnography
Malin Sveningsson (2004). Readings in Virtual Research Ethics: Issues and Controversies (pp. 45-61).

www.irma-international.org/chapter/ethics-internet-ethnography/28292

Emotion in Interactive Technology-Mediated Decision Taking and Negotiation
Bilyana Martinovski (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 3745-

3753).

www.irma-international.org/chapter/emotion-in-interactive-technology-mediated-decision-taking-and-negotiation/112811

http://www.igi-global.com/proceeding-paper/framework-realtime-online-auctions/31694
http://www.igi-global.com/proceeding-paper/framework-realtime-online-auctions/31694
http://www.irma-international.org/article/systems-view-information-systems-professor/2541
http://www.irma-international.org/article/navigating-complex-systems-design-with-the-pearl-framework/144305
http://www.irma-international.org/chapter/an-insight-into-deep-learning-architectures/184160
http://www.irma-international.org/chapter/ethics-internet-ethnography/28292
http://www.irma-international.org/chapter/emotion-in-interactive-technology-mediated-decision-taking-and-negotiation/112811

