
2001 IRMA International Conference • 657

ABSTRACT
Several toolkits have been developed in the past for the

provision of audiovisual conferencing or collaborative working
applications. Audiovisual information exchange can be seen as
the minimal functionality of such tools. The exchange of com-
monly shared data, transfer of accompanying slides, or sharing
a common whiteboard content is provided in many collabora-
tion applications. Additionally, sharing an arbitrary local appli-
cation in a conference is becoming more and more important,
because this functionality is aiming at sharing a local, non-dis-
tribution-aware, application among all members, e.g., for dem-
onstration purpose. This application sharing problem can be seen
as the most challenging one in the development of conferencing
tools. This paper compares two fundamental paradigms to solve
the application sharing problem, namely sharing the application’s
state or sharing the GUI output. For that, the basics of both tech-
niques are presented, and their advantages, disadvantages, and
implementation problems are outlined. Furthermore, an archi-
tecture is proposed for the event sharing approach which allows
the local execution of the application with a commonly shared
state. The paper concludes with outlining the expected prob-
lems of this architecture when being implemented.

1 INTRODUCTION
Recent development of the Internet infrastructure and

progress in protocol functionality led to an increasing usage of
services for collaborative scenarios. In addition to transferring
plain audiovisual information, using more sophisticated shared
workspace facilities is crucial for many scenarios in the tele-
learning and tele-education area. This shared workspace func-
tionality reaches from transferring accompanying slides or work-
ing with a shared whiteboard to sharing arbitrary applications
over the network.

The latter functionality is the most challenging one since
most applications nowadays are still unaware of any distribution
among networks. Thus, the distribution of the application’s func-
tionality has to be added to the application subsequently without
changing the application’s semantic. Hence, the effect has to be
created at each remote site that the application is running locally
and therefore can also be controlled by any remote user with a
more or less immediate effect to the application.

1.1 Challenges to be Solved
Sharing a local application among distributed users involves

the synchronized transfer of application-specific data among
different, possibly heterogeneous, users. Several challenging is-
sues have to be addressed for a proper solution being outlined in
the following. Note that this list does not claim to be exhaustive:
- Amount of transferred data: The amount of data per packet

to be transferred is part of the indicator for the generated
network load.

Application Sharing Technology: Sharing the
Application or its GUI ?

Dirk Trossen
Nokia Research Center Boston, 5 Wayside Road, Burlington, MA 01803

Dirk.Trossen@nokia.com, Phone: +1 (617) 794 7041

- Number of interception points: each technique adds certain
points to the local system to intercept the required informa-
tion to be distributed among the session members. First, the
information has to be extracted for building the appropriate
packet to be sent. Second, the packet has to be transferred
through the protocol stack degrading the overall system per-
formance. Additionally, together with the amount of trans-
ferred data (see above), the resulting number of bytes to be
sent over the network can be used as an indicator of the gen-
erated network load.

- Heterogeneity: sharing applications independent from the
member’s operating system is crucial for a wide applicabil-
ity of the technique. This requires appropriate software at
each site.

- Latecomer’s support: joining the session later should be sup-
ported without leading to inconsistencies of the shared
application’s state.

- Shared data problem: using any kind of input data within the
shared application should not lead to inconsistencies of the
distributed copies of the application. For instance, no incon-
sistencies should occur when copying local input data into a
shared spreadsheet.

- Synchronization: the shared instances of the application have
to be synchronized to ensure consistency of the workspace
among all users due to the different processing speed of the
sites and the different delays of the transmission lines.

Two different paradigms can be distinguished for provid-
ing shared application services, namely sharing the application’s
state or sharing the application’s GUI output. In this paper,
both paradigms are presented on a functional level, which al-
lows a comparison of the applicability of both approaches based
on the challenging problems listed above. Furthermore, an ar-
chitecture is presented applying the event sharing approach un-
der specific assumptions. With this architecture, the application
is executed locally on each host, while the state of the applica-
tion is distributed by sharing and synchronizing the occurring
events among all members. The paper concludes by outlining
expected problems using this approach when being implemented
in real systems.

The remainder of the paper is organized as follows. Sec-
tion 2 presents and compares both sharing application paradigms
and outlines the applicability of the presented techniques. An
architecture is proposed in Section 3 for an application sharing
system using the event sharing approach. In Section 4, related
work in the area of application sharing is depicted, before con-
cluding in Section 5.

2 SHARING GUI VS. SHARING STATE
As stated in the introduction, two paradigms are distin-

guished for realizing remote application sharing, namely shar-
ing the application’s GUI output or sharing the application’s state.

This paper appears in Managing Information Technology in a Global Economy, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2001, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

658�� • Managing Information Technology in a Global Economy

In the following, both paradigms are introduced by depicting the
main characteristics of the approaches. Furthermore, a comparison
is presented based on the challenging issues presented in section
1.1. Finally, the applicability of both approaches is outlined.

2.1 Sharing GUI Technique
The first technique is to share the application’s GUI out-

put to the set of users. For feedback from the receivers, any
input data like mouse or keyboard events is transferred back to
the sender and fed into its local event loop for control. Figure 1
illustrates this technique. The server host runs the local applica-
tion. Rendering data is transferred from the server to the re-
ceiver group using a specific protocol, e.g., a reliable multicast
transport protocol. Obtaining the rendering data can be realized
on different system levels. Interception of the GUI rendering on
a high level, such as on windows engine level, results in a high
number of interception points [12]. Each user interface routine,
which results in a graphical output at server’s side, has to be
intercepted. This adds computational overhead to the server due
to the additional transfer of the routine’s input parameters to the
receivers. However, the resulting data packets might be rather
small depending on the number of parameters and the size of
the parameter data.

Intercepting the GUI output on lower level, such as on
graphics engine level, reduces the number of interception points.
However, the amount of data to be transferred might be higher
compared to the last approach, especially for high level routines
like creating a window.

As it can be seen in figure 1, event data is sent back to the
server to be fed into its local event loop for a remote control of
the local application. Usually, transferring event data to the server
is controlled by means of floor control [2], i.e., the appropriate
host is selected based on a social protocol with an associated
floor representing the right to control the shared application.

Latecomer’s support is provided by invoking a full refresh
of the local GUI resulting in a transfer of the entire GUI content
to the receiver group. Furthermore, the shared GUI approach
allows a heterogeneous receiver group assuming appropriate
rendering engines on client’s side. As shown above, the input
event data is the only data to be synchronized with the local
application, which is realized by means of floor control. Any
additional data, like files or local device data, is held locally
with the server’s host. Hence, there is no shared data problem to
be dealt with. However, the different processing speeds of the
client rendering engines have to be considered for synchroniza-
tion of the workspace. For that, synchronization points can be
used which have to be acknowledged by each member.

2.2 Sharing Event Technique
The second technique to solve the shared application prob-

lem is the sharing event approach. The assumption being made
is that if a set of identical applications is executed with the same
start state and evolves using the same sequence of events, its
timeline evolution is identical on each site. Hence, the basic ap-
proach of this technique can be outlined as follows:

Figure 1 : Sharing GUI Approach

- define the start state to be distributed among all group members
- start local copies of the application to be shared on each host
- distribute input events of the current controlling group mem-

ber to evolve the current application’s state
This technique is demonstrated in figure 2. In contrast to

the shared GUI approach, there is no central server after start-
ing the shared application. The initiator of the shared applica-
tion session is merely used for defining the start state of the
application. Any input data is transferred from the current floor
holder to all group members. There is no central entity to which
the input data is sent first to determine the new output.

Additionally, the number of interception points can be dras-
tically reduced since only the main input event handling loop of
the current floor holder has to be intercepted and the (relatively)
small packets are to be distributed to the other participants. It
can be seen that there is no GUI information to be shared. Hence,
the local applications are executed at full speed as a local copy
when not having any input data to be fed into the system. Thus,
it is expected to perceive much lower overhead degradation
caused by the sharing protocol.

However, it can easily be seen that the homogeneity of the
environment is crucial due to the requirement having a local
application instance. Hence, heterogeneous environments are
not supported. Latecomers can be supported by maintaining a
history of the event evolution which is distributed to the recently
joined participant.

A special treatment is necessary handling the shared data
problem. If there is any local data to be fed into the local in-
stance, this case has to be handled to ensure consistency among
the different copies. The architecture, presented in section 3,
introduces a specific component to deal with this problem.

Figure 2 : Shared Event Technique

Similar to the shared GUI technique, the different processor
speeds have to be considered for synchronization. Inserting syn-
chronization events is a common solution for this problem.

2.3 Comparison of the Techniques
This section shows a comparison of the application shar-

ing paradigms depicted in the previous sections with respect to
the challenging problems of section 1.1. For the shared GUI
approach, two interception techniques are distinguished, namely
on high, i.e., windows engine level, and on low, i.e., graphics
driver level. Table 1 shows the comparison of the three ap-
proaches.

It can be seen from this table that the main advantage of
both shared GUI variants is the heterogeneity (assuming appro-
priate rendering engines on client’s side) and the absence of the
shared data problem. However, the additional load at the server
for intercepting and transferring the data to the clients is the major
weakness of this approach due to the large amount of data to be
transferred for a consistent view of the shared application.

431 74 37 195 0 7 9% /

F ile se r v e r u s a g e

He lp

Mo un t

87 7 167 7 1 121 98 %
/us

Fi le E di t Lo ca t e V ie w He lp

1 2 3 4 5 6 70

100

200

300

400

500
EDCBA

431 7437 1950 79% /

F i le s e r ve r u sa g e

He l p

Mount

87 71677 1121 98%

/us

File Edit Locat eView Hel p

1 2 3 4 5 6 7
0

100

200

300

400

500
E
DC
B
A

Rendering data
Event data

43 1 7437 1950 79% /

F il e s er v e r us a g e

He lp

Mount

87 71677 1121 98%
/u s

Fi le Edit Locate View Hel p

1 2 3 4 5 6 70

1 00

2 00

3 00

4 00

5 00
E
D
C
BA

431 7437 1950 79% /

F i le s e r ve r u s ag e

He l p

Mount

87 71677 1121 98%
/us

File Edit Locat eView Help

1 2 3 4 5 6 7
0

10 0

20 0

30 0

40 0

50 0
ED
C
BA

431 7437 1950 79% /

F i le s e r ve r u s ag e

He l p

Mount

87 71677 1121 98%

/us

File Edit Locat eVi ew Help

1 2 3 4 5 6 7
0

10 0

20 0

30 0

40 0

50 0
ED
C
B
A

431 7437 1950 79% /

F i le s er v e r u sa g e

He l p

Mount

87 71677 1121 98%
/us

File Edit Locat eView Hel p

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
ED
C
BA

…

Shared Application t

431 7437 1950 79% /

F i l e s e r ve r u sa g e

H el p

Mount

87 71677 1121 98%
/us

Fi le Edit Locate View Hel p

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
E
DC
B
A

431 7437 1950 79% /

F i l e s e r ve r u s ag e

H e lp

Mount

87 71677 1121 98%
/us

File Edit Locate View Help

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
E
DC
B
A

431 7437 1950 79% /

F i l e s e r ve r u s ag e

He lp

Mount

87 71677 1121 98%
/us

File Edit Locate View Help

1 2 3 4 5 6 7
0

100

200

300

400

500
E
DC
B
A

431 7437 1950 79% /

Fi l e se r v er u s ag e

He lp

Mount

87 71677 1121 98%
/us

File Edit Locat eView Help

1 2 3 4 5 6 7
0

10 0

20 0

30 0

40 0

50 0
E
DC
B
A

431 7437 1950 79% /

F i l e s e r ve r u s ag e

He lp

Mount

87 71677 1121 98%
/us

File Edit Locate View Help

1 2 3 4 5 6 7
0

100

200

300

400

500
E
DC
B
A

431 7437 1950 79% /

F i le s er v e r us a ge

He l p

Mount

87 71677 1121 98%

/us

Fil eEdi t Locat eView Help

1 2 3 4 5 6 70

10 0

20 0

30 0

40 0

50 0
ED
C
BA

431 7437 1950 79% /

F il e se r v er u s ag e

He lp

Mount

87 71677 1121 98%

/us

Fil eEdit Locat eView Help

1 2 3 4 5 6 7
0

10 0

20 0

30 0

40 0

50 0
E
D
CB
A

431 7437 1950 79% /

Fi l e se r v er u s ag e

He lp

Mount

87 71677 1121 98%
/us

File Edit Locat eView Help

1 2 3 4 5 6 7
0

10 0

20 0

30 0

40 0

50 0
E
DC
B
A

431 7437 1950 79% /

F i l e s e r ve r u sa g e

H el p

Mount

87 71677 1121 98%

/us

Fi le Edit Locate View Hel p

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
ED
C
BA

431 7437 1950 79% /

F i l e s e r ve r u sa g e

H el p

Mount

87 71677 1121 98%

/us

File Edit Locate View Hel p

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
ED
C
BA

2001 IRMA International Conference • 659

Table 1 : Comparison of Shared Application Techniques
The additional overhead for the shared event approach is

much smaller due to the local application running on each host.
Relatively small packets are exchanged among the participants
resulting in a low end system and network load. Hence, the shared
event technique is well suited for graphics intensive applications
(like multimedia or 3D tools) without adding significant overhead
to the system.

However, the lack of heterogeneity is an inherent problem
due to the usage of a local copy of the application. Hence, this
technique requires homogenous systems. Furthermore, the shared
data problem restricts the applicability of the approach.

2.4 Applicability of the Techniques
It can be seen from the comparison in section 2.3 that each

approach has its specific advantages and weaknesses. The first
technique, either sharing the GUI on higher or lower level, is
well suited for heterogeneous environments and when using in-
put data which cannot be shared among the other participants.

However, the shared event approach has also specific ad-
vantages which makes this technique attractive for specific sce-
narios. Due to the local copy of the application, the additional
load on each host is expected to be much lower which increases
the responsiveness of the system and thus improves the user per-
ception of the system. However, the problem of ensuring the
consistency of each user’s view when using shared data restricts
the applicability of the approach either to not using shared input
data or to use the technique in local environments where data
sharing is feasible to some extent. Furthermore, this technique
is not applicable in heterogeneous scenarios.

The following table shows typical scenarios for shared ap-
plications and the applicability of both paradigms in the these
scenarios. It is worth mentioning that the list is only meant to
outline sample scenarios. Thus, the list is neither exhaustive nor
exclusive.

Table 2 : Scenario Examples and Paradigms Applicability

It can be seen that the shared event technique is not appli-
cable to the last two scenarios due to the heterogeneous charac-
ter of these situations, while the first three scenarios are fairly good
examples where the shared event approach promises to provide a
higher responsiveness of the system and therefore an improved
user perception. Especially the multimedia presentation is hardly
conceivable using the shared GUI approach due to the large amount
of data to be transferred which is avoided by the local copy of the
application when using the shared event technique. Furthermore,
due to the local character of the scenarios, the shared data problem

can be handled much easier.
It can be summarized that the shared event technique is bet-

ter suited for local environments and high demands on the respon-
siveness of the shared application, while the shared GUI approach
is to be preferred in heterogeneous environments and when having
problems with data to be shared.

3 PROPOSED ARCHITECTURE
This section proposes a shared application architecture based

on the shared event technique outlining the main components and
depicting expected difficulties in their realization.

Figure 3 shows the proposed architecture and their compo-
nents. It can be seen that the system is entirely distributed, i.e.,
there is no central entity for any control or synchronization pur-
poses. The following components are realized within each host:
- interceptor: This component realizes the interception of events

to be shared among all session members. For that, the com-
ponent subscribes for the relevant events at the local operat-
ing system, generates appropriate messages to be distributed,
and injects the intercepted messages to the local system. The
intercepted events are forwarded to the synchronizer if a syn-
chronization operation is necessary. This component is en-
abled when the appropriate host has become the current floor
holder, i.e., the floor has been assigned to the participant.

- synchronizer: Synchronization of the different copies is cru-
cial due to the different processing speeds at the local hosts.
However, not all events are required to be synchronized as-
suming that certain operations are realized almost in paral-
lel, e.g., all graphics-related functions like opening a menu
or a dialog box. If the event invokes an application-based
computational action, a special event is used as a synchroni-
zation point for all applications. Furthermore, memory swap-
ping operations make synchronization necessary. These spe-
cial events are sent to the session’s synchronizer entities to
be acknowledged after the specific action.

- dynamic replicator: After starting the session, input data like
files might be given to the application. Usually, this informa-
tion is defined at the beginning of the session and replicated
at startup (see below). However, there might be some input
data which is not known at the beginning, e.g., clipboard
content containing graphical information of another local ap-
plication. This information has to be replicated during runtime
of the system, if possible, or the system has to generate a
runtime warning that data is added to the system which is not
available at the other sites. These tasks are realized by the
dynamic replicator component.

In addition to these common components, there are initiator-
and member-specific components. At the session initiator, the
start state has to be determined. This is realized by the static
replicator, which gathers all application-relevant information in-
cluding program settings, data to share, and environmental infor-

Figure 3 : Event Sharing Architecture

High Level Shared GUI Low Level Shared GUI Shared Event

Application Location Server Host Server Host Each Host

No. of Interception Points High Small Small

Amount of Transferred Data Small Large Small

Additional Load High High Small

Heterogeneity Yes Yes No

Latecomers Support Full Refresh Full Refresh History

Shared Data Problem No No Restricts Applicability

Scenario Description Shared GUI Shared Event

Multimedia presentation in a local environment -- ++

Programming environment in a lecture - ++

Development environment in a closed user group - +

Spreadsheet in an heterogeneous Internet environment ++ -

Accompanying presentation in an Internet lecture ++ -

Interceptor

SynchronizerDynamic
Replicator

Static Replicator

Initiator

Dynamic
Replicator

Member

Starter Interceptor

Synchronizer

660�� • Managing Information Technology in a Global Economy

mation such as screen resolution or system font settings. The
entire set of start information is distributed to the session members
to configure their local copies to be started.

At each session member, the starter component is respon-
sible for setting a consistent start state of the local copy, starting
the local application, and restoring the environment after closing
the session. The latter point is crucial for not destroying any per-
sonal local information of the application.

For the support of latecomers, each distributed component
stores its information in an evolution history which is delivered to
the latecomer for correct setup of its local copy.

It is worth mentioning that the distribution of the informa-
tion like start state and events is not within the scope of the
architecture. However, it is assumed to use reliable multicast
protocols for the transfer of such information to increase the
effectiveness of the system.

The presented architecture is kept very general to be real-
ized on specific systems like X Windows or Microsoft Windows.
However, several system-specific problems like the description
of an event and mapping onto system specifics, the realization
of the event interception, or the definition of the start state have
to be realized in a system-dependent manner. Especially the lat-
ter point is crucial for the applicability of the system in real-life
scenarios due to the complex configuration and user setting ca-
pabilities of software and operating systems nowadays regard-
ing user interface configuration, option settings, and the differ-
ent storage facilities for these settings. However, the architec-
ture presented in figure 3 depicts a framework for this realiza-
tion.

4 RELATED WORK
Many toolkits and systems were proposed in the area of

shared applications to enable cooperative working with arbitrary
applications which were not originally designed for distribution.

Many of recently proposed systems are based on the X-
Windows system [5]. This system comprises a central server be-
ing responsible for the application functionality. The output of
the application can be redirected to be rendered at X Windows
clients. Hence, this system provides a common base for distrib-
uting application functionality among the network. Extending
this system to a multipoint scenario, as done in [1][8][9][10][12],
enables very easily a shared application system for cooperative
working. However, floor control facilities have to be added for
coordinated control, which was done for instance in [1][9]. Thus,
the X Windows system offers a natural base for application shar-
ing since this platform was designed as a client-server-based
rendering approach of application’s GUI output.

Despite the wide deployment of X Windows systems, its
applicability is mainly restricted to Unix systems. Although X
Windows client software is also available for platforms like
Microsoft’s Windows and Apple’s operating system, the prob-
lem remains to share for instance Windows software on other
platforms. Hence, the heterogeneity problem is only partially
solved using an extended X Windows system.

For this, the ITU proposed a shared application protocol
for multipoint scenarios [6] which is intended to be platform-
independent. Rendering and interception functionality is defined
without taking any specific platform features into account. The
main disadvantage of the ITU approach is not only its shared GUI
approach and therefore the overhead on the server system, but also
the usage of the ineffective transport system. For the latter, the
T.120 recommendation for multipoint transfer is used, which is
shown to be very inefficient even in real multicast environments

[11].
In [4], a shared event approach was proposed which en-

ables to run local applications with a shared event processing.
In this proposal, the entire data workspace is replicated before
starting the application copies. Hence, a dynamic sensing of the
shared data problem is not supported. Synchronization among
the different copies is ensured for every next incoming event
leading to a significant overhead. Specific synchronization events
are not used for overhead reduction. Moreover, the event map-
ping and distribution is realized in a central server. Hence, the
proposal follows a distributed application, but a centralized con-
trol approach.

5 CONCLUSIONS AND FUTURE WORK
This paper presented and compared two paradigms for solv-

ing the shared application problem, namely the sharing GUI
and the sharing event technique. For both approaches, the main
features and characteristics were presented. This led to a com-
parison regarding challenging issues, such as the amount of trans-
ferred data, the number of interception points, support of het-
erogeneous environments, latecomers support, handling of the
shared data problem, and synchronization due to different pro-
cessing speeds.

The outcome of this comparison was that the shared event
technique promises to add lower overhead to the system than
the shared GUI approach due to its local copy approach. Hence,
the responsiveness of the system is expected to be increased,
which also improves the user perception of the shared applica-
tion. The major drawbacks of the shared event technique are the
lack of heterogeneity support and the reduced applicability due
to the shared data problem. However, when considering local
scenarios like school lectures, the shared data problem is much
easier to avoid with an increased usability of the shared applica-
tion due to the higher responsiveness of the system.

In addition to the comparison, an architecture was out-
lined for a shared application system based on the shared event
paradigm. The core components were presented, and the main
problems for the realization of this architecture were figured
out.

For the future work, a prototype system of the architec-
ture is planned to demonstrate the feasibility of the shared event
technique in general. For that, several system-dependent prob-
lems, especially the definition of the start state, have to be ad-
dressed. Moreover, shortcomings in specific scenarios are to be
investigated.

6 REFERENCES
[1]M. Altenhofen, J. Dittrich, R. Hammerschmidt, T. Käppner,

C. Kruschel, A. Kückes, T. Steinig: The BERKOM Multime-
dia Collaboration Service, Proceedings of ACM Multime-
dia, 1993

[2]H.-P. Dommel, J.J. Garcia-Luna-Aceves: Floor Control for
Activity Coordination in Networked Multimedia Applications,
Proceedings of 2nd Asian-Pacific Conference on Communi-
cations, 1995

[3]P. F. Fitzgerald, N.Y. Rosson, L. Uljon: Evaluating Alterna-
tive Display Sharing Systems Architectures, Proceedings of
TriComm, 1991

[4] M. C. Hao, J. S. Sventek: Collaborative Design Using Your
Favorite 3D Application, Proceedings of IEEE Conference
on Concurrent Engineering, 1996

[5]E. Israel, E. Fortune: The X Window System Server, Digital
Press, 1992

2001 IRMA International Conference • 661

[6] ITU-T: Multipoint Application Sharing, ITU-T Recommenda-
tion T.128, 1998

[7]ITU-T: Data Protocols for Multimedia Conferencing, ITU-T
Recommendation T.120, 1998

[8]O. Jones: Multi-User Application Software using Xt, The X
Resource Issue 3, pp. 55-75, 1992

[9]W. Minenko, J. Schweitzer: An Advanced Application Shar-
ing System for Synchronous Collaboration in Heterogeneous
Environment, SIGOIS Bulletin, vol.15 no.2, pp. 40-44, 1994

[10] Schmidt, J. Schweitzer, M. Weber: A Framework for
Synchronous Tele-Cooperation, Proceedings of International
Workshop on Advanced Communications and High Speed

Networks, 1994
[11] D. Trossen, T. Helbig: The ITU T.120 Standard Family

as Basis for Conferencing Applications, Proceedings of SPIE
International Symposium Voice, Video, & Data Communica-
tions, 1997

[12] K. H. Wolf, K. Froitzheim, P. Schulthess: Multimedia
Application Sharing in a Heterogeneous Environment, Pro-
ceedings of ACM Multimedia, 1995

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/application-sharing-technology/31690

Related Content

An Adaptive CU Split Method for VVC Intra Encoding
Lulu Liuand Jing Yang (2023). International Journal of Information Technologies and Systems Approach

(pp. 1-17).

www.irma-international.org/article/an-adaptive-cu-split-method-for-vvc-intra-encoding/322433

New Advances in E-Commerce
Khaled Ahmed Nagaty (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

2810-2824).

www.irma-international.org/chapter/new-advances-in-e-commerce/183992

PolyGlot Persistence for Microservices-Based Applications
Harshul Singhal, Arpit Saxena, Nitesh Mittal, Chetna Dabasand Parmeet Kaur (2021). International Journal

of Information Technologies and Systems Approach (pp. 17-32).

www.irma-international.org/article/polyglot-persistence-for-microservices-based-applications/272757

Model-Driven Engineering of Composite Service Oriented Applications
Bill Karakostasand Yannis Zorgios (2011). International Journal of Information Technologies and Systems

Approach (pp. 23-37).

www.irma-international.org/article/model-driven-engineering-composite-service/51366

Strategy for Performing Critical Projects in a Data Center Using DevSecOps Approach and Risk

Management
Edgar Oswaldo Diazand Mirna Muñoz (2020). International Journal of Information Technologies and

Systems Approach (pp. 61-73).

www.irma-international.org/article/strategy-for-performing-critical-projects-in-a-data-center-using-devsecops-approach-

and-risk-management/240765

http://www.igi-global.com/proceeding-paper/application-sharing-technology/31690
http://www.irma-international.org/article/an-adaptive-cu-split-method-for-vvc-intra-encoding/322433
http://www.irma-international.org/chapter/new-advances-in-e-commerce/183992
http://www.irma-international.org/article/polyglot-persistence-for-microservices-based-applications/272757
http://www.irma-international.org/article/model-driven-engineering-composite-service/51366
http://www.irma-international.org/article/strategy-for-performing-critical-projects-in-a-data-center-using-devsecops-approach-and-risk-management/240765
http://www.irma-international.org/article/strategy-for-performing-critical-projects-in-a-data-center-using-devsecops-approach-and-risk-management/240765

