
2001 IRMA International Conference • 1

Applying Erlang Distribution For Software
Size Estimation

Mr. Derek F. W. Cheung
City University of Hong Kong, Derek.Cheung@cityu.edu.hk

Ho-Leung Tsoi
Caritas Francis Hsu College, Hltsoi@yahoo.com

Division of Computer Studies, City University of Hong Kong
Tat Chee Avenue, Kowloon Tong, Hong Kong - Sar, China

Ph: (852) 27888669, Fax: (852) 27888456

ABSTRACT

The Program Evaluation and Review Technique (PERT) model is one of the most popular methods for estimating software size and,
sometimes, development effort. It mainly relies on expert judgment to estimate the ultimate size of a project. However, the basic
assumption of this technique may be incorrect. The issue addressed in this paper concerns the weakness of the PERT model and
proposes applying Erlang distribution to tackle this problem. An example has been included to show the effectiveness of this new model.
Keywords: Software Project Management, Size Estimation, Erlang distribution

1. INTRODUCTION
The major problem faced by software project developers is

the prediction of the required resource level for development. It
emphasizes estimation of the size of the system to be delivered in
order that appropriate budgets and schedules can be agreed upon.
Supposing the size of a software system and its development
effort are underestimated, it means that the budgets and time are
not sufficient to cover all processes that need to be developed. As
a result, underestimated projects that do reach completion are of-
ten released prematurely in order to meet the budget, but these
projects may omit some important features or system testing and
result in incomplete and unreliable systems. Jones (1991) claims
that up to 15 % of new development projects are abandoned mid-
stream, largely due to cost overruns. It is obvious that, without
accurate estimates, the planning process is likely to be unreliable
and result in budget and schedule overruns.

To tackle the problem, a number of software size estimation
models have been developed in the past two decades (Albrecht
1983; Boehm 1981; Putman 1978). Among them, the PERT model
is a widely cited model used in software project management. The
PERT model, based on the Beta distribution, was developed by the
U.S. Navy in the 1950s to control the development of the Polaris
submarine missile program (Pressman 1992). Basically, it relies on
expert judgment to estimate the ultimate size of a project. To offset
the bias due to psychological and personal factors, it requires three
estimates, namely Most Likely, Optimistic, and Pessimistic, to
form a single expected value.

Although the PERT model is widely used, the assumption of
this model may be incorrect. In the PERT model, user requirements
and systems specifications are needed to estimate the software
size. However, they may be very unstable in the early stage of the
system life cycle. The estimation process is hindered by the im-
precisions of assessment. Even small changes in these factors, such
as resource availability, may heavily impact on the size of the final

project. Since it is impossible to remove all types of imprecision
and vagueness of system specifications in the sizing process, the
most effective way is to indicate the probability of error in the
estimates. Unfortunately, an extra error violates the basic assump-
tion of the PERT model. In this paper, several factors that cause
imprecision will be discussed in detail. Moreover, it proposes to
apply Erlang distribution to tackle the assumption problem in the
PERT model. The last section of this paper reports on the results
of a real life application that applies Erlang distribution for doing
the estimation. The result implies that the proposed model im-
proves the way of estimation.

1.1 Imprecision of Software Size Estimation
It is commonly recognized that size estimation needs to be

taken as early as possible in the software development life cycle in
order to cause a real impact on the development process. Unfortu-
nately, there are a number of factors that cause imprecision in
software size estimation, especially in the early stages of the soft-
ware development life cycle. As a consequence, software size esti-
mation has proved to be a difficult task in practice. Some typical
examples are described as below:
(a) Uncertainty in requirement specifications

In the early stage of software development, user require-
ments may not be clearly known. Requirement specifications can-
not be finalized until some iterations from the analysis phase to the
design phase.
(b) Rapid Changes in Information Technology

The development of software application is a dynamic envi-
ronment that is characterized by many changing factors such as
changes in information technology. It often leads to an improve-
ment and will be an influence on the productivity rate. Thus the
effort and time to develop software will be changed. Unfortu-
nately, the level of impact is difficult to estimate before use.

This paper appears in Managing Information Technology in a Global Economy, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2001, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

2�� • Managing Information Technology in a Global Economy

(c) Difficult to quantify some intangible factors
A software system is developed by many intellectual people

whose activities, such as productivity, are hard to measure and
determine.

2. THE PERT ESTIMATION METHOD
In the PERT model, the estimator decomposes the develop-

ment cycle into a number of phases and then statistically operates
on the data to obtain estimates of the application. It enables the
estimator to reduce the effect of uncertainty in estimated effort of
the individual person and to obtain a better estimate of the overall
value. In using this model, estimators are requested to give three
estimates, namely optimistic (O

i
), the most likely (M

i
), and pessi-

mistic (P
i
). For instance, Optimistic time is the shortest possible

time required for completing an activity or a sub-system. Most
likely time is the time most frequently required for completing an
activity or sub-system. Pessimistic time is the maximum possible
time required for completing an activity or sub-system. The equa-
tion for estimating the expected value of total effort in the ith sub-
system, E

i
 , is: E

O M P
i

i i i=
+ +4

6

where Oi is the lowest possible number of i
 th

 subsystem,
 Mi is the most likely number of i

 th

 subsystem,
 Pi is the highest possible number of i

 th

 subsystem,
The equation for estimating the standard deviation of the

number of in the ith subsystem, s
i
 , is:

σ i
i iP O

=
−
6

The total effort, E
t
, and standard deviation for the overall

system, s
t
(also called sigma), are:

E ET i
i

n

=
=
∑

1
and σ σT i

i

n

=
=
∑() /2

1

1 2

In above equations, the mean tells you the estimated value
and the standard deviation quantifies the risk for you. The stan-
dard deviation is an indication of the spread of the curve. To be
68% confident that a project will be completed at or below a given
estimated value, you must take the mean and add to the standard
deviation. Other confident levels are listed as below (Arifoglu 1993):
99.8% of being between E

T
 - 3s

T
and E

T
 + 3s

T

95 % of being between E
T
- 2s

T
and E

T
 + 2s

T

68% of being between E
T
 - s

T
and E

T
 + s

T

2.1 Problem of Using the PERT Method
Despite the fact that the PERT model is widely used, it is

not free from criticism. The assumption of Beta distribution is the
major weakness to be criticized from a practical point of view.
Basic property of Beta distribution is that it provides positive
density only for the parameters for X-axis in an interval of finite
length. If the value of X-axis is outside the interval, a negative
density may appear. Negative density is impossible to be used in
real life situations. For instance, there are no negative manpower or
Source Lines of Code in software project development.

Experience and findings from numerous studies have shown
that the development of the software project involves a lot of
factors that are hard to control in this ever-changing world. Even
small changes in one of these factors may cause a heavy impact on
the expected value. Besides, human estimators tend to be too opti-

mistic and the expected value will be biased toward the pessimistic
estimated point (Luiz 1990). As a consequence, a general point
concerning the PERT method is that there is very small probability
that the actual values do not fall beyond the optimistic estimates.
On the contrary, there is very high probability that the actual
values fall beyond the pessimistic estimates. Although the per-
centage for this overrun is very low (around 10%), we need to
consider this situation in estimates, especially for risky projects.
Considering that Beta distribution has a precise cut-off between
“The optimistic” and “The pessimistic” points, it does not handle
this practical problem.

3. ERLANG DISTRIBUTION ESTIMATION METHOD
Gamma distributions (including exponential) provide a wide

variety of probability models for continuous variables and are
often appropriate in practice. Erlang is a special case of the gamma
distribution. It was first studied by the Danish engineer Erlang in
connection with the distribution of waiting times in telephone
networks (Anderson 1986) and is very widely used in engineering
and science disciplines.

As already stated, most people tend to give estimates that
are optimistic. As a result, most size estimates will not appear as
symmetries. Most, in fact, will be skewed to one side of their
mean. The project manager can assume that actual activity comple-
tion times are not normally shorter than the optimistic estimate,
but they ought to allow for a certain percentage of activity times to
take longer than the pessimistic estimate. The author admits that
the percentage may be adjusted subject to the project managers’
judgments or particular organizations. The way to determine the
value is not fixed, but further discussion is beyond the scope of
this paper.

For using Erlang distribution in estimation, three estimates,
namely optimistic time, most likely time and pessimistic time, and
a percentage of error will be given by estimators. Once these pa-
rameters are given from users, the shape parameter of the Erlang
distribution can be determined. Steps to derive Erlang distribution
are shown as below:

Erlang Distribution: f x n

nxn e x

n
X

X

(; ,) ()!λ
λ λ

=
− −

−
≥

<

1

1
0

0 0

 mode = n(l -1)

where n is called scale parameter and l is called shape parameter

Step 1: Devise a comprehensive questionnaire that
addresses the relevant project issues

Similar to the PERT model, the practitioner relies on expert
judgment to estimate the size of a project. Such estimation is based
on the personal experience with past projects of similar character-
istics. In order to minimize the subjectivity problem, a team of
people with varying levels of expertise is formed to conduct the
Erlang method. This step will consolidate the judgment of a group
of professional software developers. Moreover, the project will be
decomposed into three different phases; namely, design phase,
coding phase, and testing phase. Estimation is made for each phase.
According personal feelings, such as optimistic, most likely, and
pessimistic, three estimated values will be given by the estimator.
All information will be collected through questionnaires.

Step 2: Solicit opinions from experts who understand the
various relevant issues.

Step 3: Apply a simple statistical counting method to obtain
and feedback the result to the participants.

2001 IRMA International Conference • 3

Various statistical data will be individually evaluated as shown
below:

E
T T T

i
oi mi pi=

+ +4

6
, E ET i

i

=
=
∑

1

3

, E To oi
i

=
=
∑

1

3

, E Tm mi
i

=
=
∑

1

3

 , E Tp pi
i

=
=
∑

1

3

 and

P

P

e

i
i= =
∑

1

3

3

where,
Optimistic man-power : Toi for i

 th
 phase,

Most likely man-power : Tmi for i
 th

 phase,
Pessimistic man-power : Tpi for i

 th
 phase,

Average man-power : Ei for i
 th

 phase
Percentage of error : Pi for i

 th
 phase,

Average percentage of error : Pe for whole
system
Total man-power : Et for whole
system
Overall optimistic man-power : Eo for whole
system
Mode of man-power : Em for whole
system
Overall pessimistic man-power : Ep for whole
system

Step 4: Ask the participants to reassess their judgment
based on the feedback information and return with any

appropriate comments.

Step 5: Repeat step 3 and step 4, until no major changes are
found in the Participants’ opinions

The following information will be finalized after the end of
the above processes:

Mode of man-power (Em) = n(λ -1)

∴ λ = (Em + n) / n
—————————————— (1)

Expected percentage (Po) = 1 - Pe
—————————————— (2)

P
o

 =
min

max

min

max
(; ,)

()!∫ ∫=
−

− −

f x n dx
x e

n
dx

n n x

λ λ λ1

1
-------------(3)

where n is called scale parameter and l is called shape parameter.

Using Incomplete Gamma Function table (Anderson 1986),
shape and scale parameters can be determined by using computer
iteration method.

4. AN EXAMPLE
In this section, an example will be presented to show how to

apply the Erlang estimation model for a real life software develop-
ment. The example has been modified from a real-life project, which
has been requested by a large jockey club and developed by an
international software consultation organization. This project was
designed to replace the existing telephone betting system on a
proprietary hardware platform. The client request to develop this
system on a Personal Digital Assistant (PDA) computer and sev-
eral advance wireless transmission technologies will be included.
After an intensive investigation, a decision has been reached ap-

plying Erlang distribution model to estimate the size of this appli-
cation. The reasons are shown as below:
· One serious problem faced by the developer is that no suffi-

cient historical data can be referred either from the company or
public standard. It affects the accuracy in using many popular
software estimation models.

· Object-Orient technology will be applied in this development
and many current sizing models, such as Function Point, Fea-
ture Points, can be used in such platform.

· The application had been built on a new developed PDA plat-
form working together with an advanced wireless digital mo-
dem. Unfortunately, the modem has not been released by the
supplier while starting to develop the application.

· The development team consists of a mix of experienced soft-
ware consultants and some newly recruited graduates. They do
not have much experience, either in the PDA hardware plat-
form or in wireless telecommunication technology.

In summary, there are many uncontrolled and unpredictable
factors existing in the development cycle. According to the weak-
ness of the PERT model mentioned in section I, the company
derives an Erlang estimation model. It is expected to provide flex-
ibility to the management for planning and controlling develop-
ment and maintenance projects. Estimation process is shown as
below:

Step 1: Devise Questionnaire to all members of the develop
ment team

Step 2: Solicit opinions
Step 3: Applying statistical method and feedback result to all

participants
Step 4: Re-collect opinions from participants
Step 5: Repeat step 3 and step 4 until no major changes

The total expected value X (in KSLOC-thousand source line
of codes) is aggregated by all individual stages:
Optimistic size : Eo = 1 KSLOC
Most Likely size : Em = 3 KSLOC
Pessimistic size : Ep = 7 KSLOC
Average Percentage of error : Pe = 5%

Using (1) λ = (mode + n) / n = (2 + n) / n —— (I)
Using (2) Expected percentage (Po) = 1 - Pe = 1 - 5% = 95%
—— (II)

Thus, the probability that the project finish between opti-
mistic and pessimistic time is 95%.

Using (3) Expected percentage -95%- f x n dx
x e

n
dx

n n x

(; ,)
()!min

max

min

max
λ λ λ

∫ ∫=
−

− −1

1
λ λλ λn n x n n xx e

n
dx

x e

n
dx

− − − −

−
−

−∫ ∫
1

0

1

01 1()! ()!

max min

()[
()!

()
()!

()]
max min

λ λ λ
λ λ

n
n x n xx e

n
d x

x e

n
d x−

− − − −

−
−

−∫ ∫1
1

0

1

01 1
=

Before using computer iteration method, let y = lx, then
Incomplete Gamma function can be used in above equation.

()[
()!

()
()!

()]
max min

λn
n y n yx e

n
d y

x e

n
d y−

− − − −

−
−

−∫ ∫1
1

0

1

01 1
95% = = ln-1 [F(max,n) -

F(min,n)]

 Where F(x,n) is Incomplete Gamma function

By using computer iteration method, we find n = 5 and l =
1.22

The Erlang distribution is F(x:1.22,11) (see figure 1) and the
expected value (50%) is 3.5 KSLOC (see figure 2). It is very close
to the result (3.3 KSLOC) yielded by the PERT method.

Finally, the actual size of the project is 7.3 KSLOC. The
discrepancy between the estimated and real size values for the

4�� • Managing Information Technology in a Global Economy

PERT model is +4 KSLOC (121%). The most interesting point is
that the actual size of the project is greater than the pessimistic
value in the PERT model. It is a good example to show that the
assumption of the PERT model is incorrect in some cases, espe-
cially for some risky software projects.

5. CONCLUSION
There is no doubt that project managers have to confront

many different kinds of problems, such as technical, management,
and personnel, in the software development cycle. They are re-
sponsible for ensuring that all development processes are con-
trolled appropriately in order to meet the budget and schedule.
Unfortunately, software projects regularly get out of hand in the
development cycle.

As mentioned earlier, software project development has a
dynamic nature. Therefore, changes are bound to occur. A good
estimate is the first step to get a successful software project. In
this paper, a technique, applying Erlang distribution for software
size estimation, has been proposed. The Erlang estimation model
is not a completely new method but it tackles the weakness of
using the PERT model. The author admits that this model is still
subjective, since it ultimately depends on expert judgment to esti-
mate the ultimate size of a project. However, this model incorpo-
rates confidence concept to show the risk level in practice. Instead
of a crisp value, the Erlang model provides an estimate with a
different confidence level that allows project managers to consider
the worst situation of the development effort estimation. Besides,
project managers can select appropriate confidence levels for their
projects.

From the example, it shows that the pessimistic estimated
value in the PERT model may not be the upper boundary of a
project. Overruns are common in the software industry. As a re-
sult, the assumption of the PERT model needs to be re-considered.
Besides, the Erlang approach has proved to be more informative
than the PERT model. The project managers are free to select the
appropriate confidence level for their project. With a higher prob-
ability level, the project management would be able to prepare a
more realistic project plan to cope with the possible problems
during the project development. The software project is eventu-
ally successful. It is not because there are no problems during the
development cycle but because the problems are taken into ac-
count as early as possible.

ACKNOWLEDGMENT
The author is thankful to Dr. C. Yau for various insights

concerning the ideas upon which this paper is built, and to Mr.
Vincent Cheng and Miss Susan Addison for their helpful sugges-
tions.

REFERENCE
Albrecht J. Allan and Gaffney E. John (1983),”Software Function,

Source Lines Code, and Development Effort Prediction: A Soft-
ware Science Validation,” IEEE Trans. of SE, November, Vol. 9
No. 6, pp. 639-647

Anderson D.R.(1986), “Statistics: Concepts and Applications”,
West Publishing Company, NY.

Arifoglu A. (1993), “Methodology for Software Cost Estima-
tion”, ACM SIGSOFT.

Boehm W. Barry (1981), “Software Engineering Economics,” NJ,
Prentice Hall.

Pressman (1992), “Software Engineering”, McGraw-Hill, NY.
Putman, L.H. (1978), “General Empirical Solution to the Macro

Software Sizing and Estimating Problem,” IEEE Trans. on Soft-

ware Engineering, April, Vol.4 No. 4, pp.345-361
Jones, Capers (1991), “Applied Software Measurements”,

McGraw-Hill, NY.
Luiz A. L. (1990), “Software Size Estimation of Object-Oriented

Systems”, IEEE Trans. of SE., Vol. 16 No. 5, pp.510-522

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/applying-erlang-distribution-software-

size/31671

Related Content

Computer Simulation of Particle Packing In Bituminous Concrete
Kasthurirangan Gopalakrishnanand Naga Shashidhar (2009). Utilizing Information Technology Systems

Across Disciplines: Advancements in the Application of Computer Science (pp. 243-260).

www.irma-international.org/chapter/computer-simulation-particle-packing-bituminous/30729

Breaking the Ice: Organizational Culture and the Implementation of a Student Management

System
Lindsay H. Stuart, Ulrich Remusand Annette M. Mills (2013). Cases on Emerging Information Technology

Research and Applications (pp. 1-17).

www.irma-international.org/chapter/breaking-ice-organizational-culture-implementation/75852

A Study of Knowledge Discovery and Pattern Recognition Based on Large-Scale Sentiment

Data in Online Education for College Students
Guoliang Li, Bing Wangand Maoyin You (2023). International Journal of Information Technologies and

Systems Approach (pp. 1-13).

www.irma-international.org/article/a-study-of-knowledge-discovery-and-pattern-recognition-based-on-large-scale-

sentiment-data-in-online-education-for-college-students/323194

Random Search Based Efficient Chaotic Substitution Box Design for Image Encryption
Musheer Ahmadand Zishan Ahmad (2018). International Journal of Rough Sets and Data Analysis (pp.

131-147).

www.irma-international.org/article/random-search-based-efficient-chaotic-substitution-box-design-for-image-

encryption/197384

A Study of Knowledge Discovery and Pattern Recognition Based on Large-Scale Sentiment

Data in Online Education for College Students
Guoliang Li, Bing Wangand Maoyin You (2023). International Journal of Information Technologies and

Systems Approach (pp. 1-13).

www.irma-international.org/article/a-study-of-knowledge-discovery-and-pattern-recognition-based-on-large-scale-

sentiment-data-in-online-education-for-college-students/323194

http://www.igi-global.com/proceeding-paper/applying-erlang-distribution-software-size/31671
http://www.igi-global.com/proceeding-paper/applying-erlang-distribution-software-size/31671
http://www.irma-international.org/chapter/computer-simulation-particle-packing-bituminous/30729
http://www.irma-international.org/chapter/breaking-ice-organizational-culture-implementation/75852
http://www.irma-international.org/article/a-study-of-knowledge-discovery-and-pattern-recognition-based-on-large-scale-sentiment-data-in-online-education-for-college-students/323194
http://www.irma-international.org/article/a-study-of-knowledge-discovery-and-pattern-recognition-based-on-large-scale-sentiment-data-in-online-education-for-college-students/323194
http://www.irma-international.org/article/random-search-based-efficient-chaotic-substitution-box-design-for-image-encryption/197384
http://www.irma-international.org/article/random-search-based-efficient-chaotic-substitution-box-design-for-image-encryption/197384
http://www.irma-international.org/article/a-study-of-knowledge-discovery-and-pattern-recognition-based-on-large-scale-sentiment-data-in-online-education-for-college-students/323194
http://www.irma-international.org/article/a-study-of-knowledge-discovery-and-pattern-recognition-based-on-large-scale-sentiment-data-in-online-education-for-college-students/323194

