
2001 IRMA International Conference • 321

The Future of Software Development
Karen Church and Geoff te Braake

Department of Information Technology, Port Elizabeth Technikon, Private Bag X6011, Port Elizabeth, 6000
South Africa, Tel: 27-41-5043433, Fax: 27-41-5043313, E-Mail: kchurch@petech.ac.za

ABSTRACT
Software development has changed dramatically in the last fifty years and will continue to change. Its future course is of particular
interest to developers, in order to gain the correct skills, and to any person faced with a strategic information technology (IT) decision.
It is commonly accepted that computers will play an ever-larger role in modern civilisation. There are many unknowns, but the IT
decisions made today will affect the competitiveness and preparedness for tomorrow. Awareness of the central issues that will affect the
future of software development is the best form of preparation. This paper presents a view of the future of software development based
on the history of software development and the results of two surveys.

INTRODUCTION
Software development tools and techniques have changed

considerably in the last half century, are still changing, and will
continue to change in the future as hardware capabilities improve
and new technologies make new methods of processing and com-
munication possible.

The aim of this paper is to draw conclusions about the future
of software development from trends that can be identified in its
evolution to date. The results of two surveys will help to illustrate
some of these trends. The first was a questionnaire survey aimed at
software developers which compared their First and Last Project
in terms of a number of criteria. The second was a survey of job
advertisements in the Computing SA newspaper over a ten year
period.

This paper addresses the advancing generations of program-
ming languages which have gained and lost popularity over the
survey period. The evolution of coding styles and software archi-
tecture will be briefly described. The growing importance of user
interfaces will be explained, in addition to a brief description of the
increasing complexity of applications from user and developer
perspectives. The final section will describe the future trends that
can be projected from these points.

LANGUAGE GENERATIONS AND USAGE
The first applications of computers were to gain some form

of military advantage based on doing many mathematical calcula-
tions very quickly (Arnold, 1991, pp.32-35). Computers then
began to be used in business to speed up administrative tasks
(Leveson, 1997, p.130). Online transaction processing and later,
the personal computer, introduced a whole new dimension to com-
puting by allowing people without programming training to use
computers.

The challenge for software developers is to create programs
that enhance the lives and work of those who use them. This
section begins by describing the software development evolution.
The development of programming language generations and their
usage is addressed.

LANGUAGE GENERATION
In the early generations of programming languages, machine

and assembly languages, the code was written at the level of ma-
chine instructions. Many statements were needed to accomplish
simple calculations. Programs were long and errors were easily

introduced, but difficult to identify and remove.
High level languages (HLLs) were developed to hide the de-

tails of implementation from the programmer. This is known as
abstraction and is a common theme in the history of programming
languages (Watson, 1989, pp.4-10). Each HLL command is trans-
lated into any number of machine instructions. HLL coding is
shorter, and programs are easier and quicker to write and debug.
The commands are fairly easy to learn and meaningful names can
be given to variables and subprograms.

HLLs differ in the amount of abstraction that they provide.
Visual Basic (VB) offers a higher level of abstraction than C++, as
can be seen in Figure 1, in the operation to change the mouse
pointer.

Visual Basic
frmMain.MousePointer =
vbHourglass

C++
HCURSOR lhCursor;
lhCursor = AfxGetApp()->
LoadStandardCursor
(IDC_WAIT);
m_bCursor = TRUE;
SetCursor(lhCursor);

Figure 1: Levels of abstraction in Visual Basic and C++

The higher the level of abstraction, fewer lines of code are
required to achieve the same goal. Less code in the program makes
it easier and quicker to write and debug. However, there is usually
a performance penalty when the level of the language is higher.
Flexibility is also decreased as the level of the language increases
because the programmer has less control over the exact way in
which the processing is done (McConnell, 1996, pp. 345-368).

Non-procedural languages take abstraction even further, with
the programmer coding the desired result, not the method for achiev-
ing it. Historically, procedural languages have been the most com-
monly used type of language, as other language types were slower
and more resource intensive. However, recent improvements in
computer performance and language optimisation has meant that
currently, there is a greater use of the other types of languages. The
most widely used non-procedural language is SQL (McDermid,
1991, p.44/3; Kimball, 1996, pp.xxi-xxii; Watson, 1989, pp.79-
81).

Table 1 shows a definite trend towards higher level languages
with over three quarters of the Last Project being done using fourth
generation languages (4GLs). This can be attributed to increasing

This paper appears in Managing Information Technology in a Global Economy, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2001, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

322 • Managing Information Technology in a Global Economy

pressure to produce systems more efficiently together with the
development of more powerful 4GLs (McConnell, 1996, pp.2,345).

Style First Project Last Project
3GL 57.1% 15.4%
4GL 35.7% 76.9%
Other 7.1% 7.7%

Table 1: Language Generation by Project

LANGUAGE USAGE
Whilst hundreds of programming languages have been cre-

ated, relatively few have been widely used. The advert survey
(results below) aimed to discover which languages have been used
the most in software development since 1989. A number of general
trends can be seen from Table 2.

 1989 1990 1992 1993 1994 1995 1996 1997 1998 1999 2000
ASP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 2.5 7.9
C 12.1 8.7 23.1 28.8 22.1 13.5 9.9 8.5 6.2 7.1 6.8
C++ 0.0 0.0 4.6 8.0 19.4 18.5 16.2 11.7 12.9 16.2 14.7
COBOL 26.4 34.1 18.5 16.8 17.1 14.9 17.0 21.0 12.4 6.0 1.3
HTML 0.0 0.0 0.0 0.0 0.0 0.0 0.3 2.9 2.6 3.0 8.7
Java 0.0 0.0 0.0 0.0 0.0 0.0 0.6 3.2 4.7 7.0 12.3
JavaScript 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.1 3.1
Natural 12.1 19.2 15.7 12.8 14.4 8.6 8.8 9.8 9.4 3.3 0.5
RPG 18.3 19.2 21.3 15.2 6.8 9.6 5.4 5.6 6.0 4.6 0.8
SQL 2.9 0.9 7.4 7.2 5.0 10.2 6.5 4.0 9.4 10.2 11.0
Visual Basic 0.0 0.0 0.0 0.0 10.4 19.5 17.9 10.9 16.5 20.5 18.4

Table 2: Most Sought-after Languages by Year

Figures = percentage of skills per newspaper issue.

The most sought-after language in the early 1990s was CO-
BOL, followed by RPG, Natural, and C. By the year 2000, the
main languages were C++, VB, SQL, and the Web languages Java,
HTML, and ASP.

Thus, there has been a move to higher level languages. There
has been a shift away from some long established languages with
the new computing environment dominated by the graphical user
interface and the Web in particular. The next section will describe
the evolution of coding styles.

CODING STYLE EVOLUTION
As seen in the previous section, languages have become more

powerful and have raised their level of abstraction. The program-
ming language chosen for development may either encourage or
discourage certain programming practices depending on their fea-
tures. This section highlights some of these coding styles.

Structured programming became the most popular program-
ming style in the 1970s. It popularised the concept of modular
programming (Yaeger, 1995, p.2). A source of many problems
with structured programming was that variables could be inadvert-
ently changed resulting in errors.

Since the late 1980s object-orientation has gained popularity
amongst software developers. Object-orientation makes use of
classes which encapsulate data and functions into a single unit.
Object-orientation is an important paradigm for contemporary
system developers and is supported in many widely used lan-
guages, such as C++ and Java (Salus, 1998, pp.5-11).

Graphical development languages (e.g. Visual Basic, Delphi)
popularised the concept of component-based programming. Com-
ponents should be built with standard interfaces so that they can
be reused by other applications and any other language or tool that

supports the interface method. This is widely used in Internet
development. (Jacobson et al., 1997, pp.85,156).

It is common to build components using the object oriented
style just as object orientation makes use of structured concepts.
Thus the different styles can be seen as an evolution of better
coding practices which aim to increase productivity, maintainabil-
ity, reusability, and readability of code while decreasing the num-
ber of errors, and time required for coding and maintenance.

Style First Project Last Project
Component 7.1% 23.1%
Object-oriented 28.6% 61.5%
Structured 50.0% 15.4%

Table 3: Coding Style by Project

The coding style used by the respondents in the First and
the Last Project shows considerable difference (Table 3). In the
First Project the structured style was the most common, followed
by the object-oriented style. Structured programming decreased
considerably in the Last Project. Object orientation was the clear
leader in the Last Project, followed by the component style.

The majority of object-oriented and component-based de-
velopment is done using 4GLs . Projects developed using the struc-
tured style, however, mainly use 3GLs.

There has been an evolution in programming styles to pro-
mote modularisation, data hiding, and reuse. This allows systems
to be developed more quickly, to have better quality and to be
easier to maintain. Software architecture has also changed consid-
erably resulting in different development opportunities and chal-
lenges which will be discussed in the next section.

SOFTWARE ARCHITECTURE
The previous sections showed that using modern coding

styles can help developers to produce and maintain systems more
efficiently. These styles have been supported by different lan-
guages in different eras. The evolution in software architecture is as
a result of the changing capabilities of hardware, and increasingly
distributed and integrated systems.

Most early data processing applications were isolated sub-
systems. Each application used its own flat data files. Online trans-
action processing increased the number of records in files and re-
quired random access to records. However, as the number of records
in files increased, inconsistencies in data and accessing of records
became major problems. Therefore a more integrated solution was
sought and a number of database models were developed.

The network model was the first de facto database model in
the late 1960s and early 1970s. The databases were, however,
dependent on the application development language and many
vendors produced incompatibile products (Fortier, 1997, pp.187-
188). The relational model, proposed in 1970, was independent of
the application development language using the database and many
applications could access the same database (Deen, 1985, p.77).
This meant that the organisation was not bound to a particular
language for development (Hughes, 1988, p.4-5). The relational
model has become popular due to the simplicity of database struc-
ture, the flexibility of relationships, and the richness of data ma-
nipulation (Fortier, 1997, pp.207,244).

In the mid-1980s Local Area Networks (LANs) were be-
coming popular and each department in a company installed its
own LAN and developed its own departmental client/server appli-
cations. This resulted in redundant and inconsistent data within an
organisation. In the early 1990s the development of enterprise
client/server IT systems which replaced or augmented legacy main-

2001 IRMA International Conference • 323

frame systems and integrated departmental LANs, allowed com-
panies to deliver the right information when and where it could
best be used (Goldman, Rawles & Mariga, 1999, p.19).

These systems began using the three-tier application archi-
tecture (Figure 2), which is also the architecture of the Web. Appli-
cations are divided into three layers or tiers known as P-A-D,
presentation, application and data. Each tier can be handled by
different computers and developed in different languages. Not only
can the layers of the application be split onto different computers,
but each layer, especially the application and data layers, may also
be split over multiple computers making it scalable. System main-
tenance and modification is facilitated by allowing changes to one
tier or component without affecting the others (Edwards, 1999,
pp.3-11). Providing the client with a Web interface greatly simpli-
fies distribution and platform problems.

P resenta t i

A pp lica t io n

D ata A p p1 A pp2

A pp3
S O A
P

C o rb a

http DCOM

DCOM

ODBC
OLE DB

Figure 2: Three-tier Web architecture

Thus software architecture has moved from a single unit on
a mainframe computer to distributed data, application and presen-
tation tiers. Data has moved from multiple, inconsistent data
sources to single integrated databases. In dealing with large sys-
tems, such as the many enterprise scale systems presently being
created, it is desirable to have an architecture that allows units to be
worked on simulataneously and independently (Jacobson, 1997,
p.171). An area of software development that has become very
important in recent years, is the user interface, which is discussed
in the next section.

USER INTERFACES
IT systems are commonly developed for access in a distrib-

uted environment, giving non-IT people access to information re-
sources and data processing power. This makes the user interface
particularly important in development. Changes in common user
interfaces are described below.

The first few decades of computing focused on performance
and functionality of applications. When millions of people began
using productivity tools, it became apparent that a primary deter-
minant of the success of an application was its ease of use for users
of all levels of experience (Van Dam, 1997, p.64).

From the early 1960s through the mid-1980s text-based user
interfaces were used almost exclusively. The WIMP GUI (graphi-
cal user interfaces based on windows, icons, menus and a pointing
device), first began to gain popularity with the Macintosh in 1984
and later achieved its current dominance with Windows. When this
event-driven paradigm was introduced it was difficult for develop-
ers to produce this type of application with the available tools.
The Windows environment returned programmers to working in
ways reminiscent of low-level programmers. A tool was needed to
increase the level of abstraction to allow efficient Windows pro-
gramming. Therefore languages such as Visual Basic and Delphi
were developed to build GUI applications efficiently (Cornell,
1997, pp.xix).

Half of the First Projects reported in the questionnaire sur-

vey were text-based. Text-based systems development virtually
disappeared in the Last Project whilst Web interfaces show the
biggest gains, even though they are relatively new (Table 4).

Style First Project Last Project
GUI 35.7% 53.8%
Text-based 50.0% 0.0%
Web-based 14.3% 46.2%

Table 4: User Interface

Thus the user interface is one of the most important aspects
of IT systems, especially as they are becoming more complex from
a number of perspectives, which are discussed below.

GROWING APPLICATION COMPLEXITY
The user interface is one of the primary factors determining

the success of a system. Applications are becoming more powerful
but also more complex for developers to produce. This complexity
arises from increasing integration with other systems and utilising
the growing power of computers to produce better information.
These trends are discussed in terms of groupware, multimedia,
multiple language development, and team work.

GROUPWARE
Groupware is a relatively new set of technologies that al-

lows for easier communication and collaborative work by means of
a computer network. The Web is a very good medium for deploy-
ing groupware technologies, but needs to have enhanced security
to make it viable (Goldman et al., 1999, pp.177-178, 217).

MULTIMEDIA
Multimedia provides a richer experience of the application

for the user. This has become possible because of increased hard-
ware capability. The Internet provides a container for presenting
rich multimedia as well as providing the means of co-ordinating its
distribution. Multimedia development tools have developed rap-
idly due to industry focus on the Web and its mass usage (Nicol et
al., 1999, p.79).

An increasingly important feature of the software industry
is gaming. Games tend to tax computer system resources to the
maximum, making it imperative that developers access sound and
graphics capabilities at low levels to increase the speed of perfor-
mance. Graphics and sound are combined to create more real expe-
riences. The simulation effects are becoming so realistic that games
have large inventories of the objects and environments that are
simulated. Some games require some level of artificial intelligence.
Therefore, games development is driving new technologies, many
of which will have applications in marketing, education and other
areas (Tapscott, 1999; Walnum, 1995, pp.6-11,70-71).

Multiple Language Development
It is evident from the advert survey referred to earlier that

multiple technologies for a single project is not a new phenom-
enon. Many adverts for COBOL programmers included required
skills in CICS and some database management system. In 2000
(Table 2) SQL was the fourth most sought-after skill. In Web
development there are client side scripting and markup languages
and application logic languages (Edwards, 1999, pp.3-11). There-
fore, multiple language development is the rule, rather than the
exception.

The questionnaire demonstrated that over 90% of the last

324 • Managing Information Technology in a Global Economy

projects (Table 5) were developed with multiple languages. This
was particularly true of Web-based projects. It was less common
in GUIs and the minority of text-based systems (Table 6). The
component paradigm gives the possibility of being able to create a
system built from components developed in the best language for
the task. The components are connected using an interface proto-
col, the most common being COM/DCOM and CORBA (Finne,
Leijen, Meijer & Jones, 1999).

Style Multi-language Single Language
First Project 35.7% 64.3%
Last Project 92.3% 7.7%

Table 5: Number of Languages by Project

Style Multi-language Single Language
GUI 66.7% 33.3%
Text 28.6% 71.4%
Web 87.5% 12.5%

Table 6: Number of Languages by Interface

TEAM WORK
A team can be defined as a group of people whose comple-

mentary skills, common purpose and approach enable them to
complete a task for which they are mutually accountable. Team
work has always been important, especially now with multiple
languages and having to deal with the intricacies of networks and
other technologies. This range of skills can only be provided by
teams (Jacobson et al., 1997, p.54). Table 7 shows that the per-
centage of projects on which developers worked as a team, as
opposed to doing the project on their own, rose from 78.6% to
100%. Thus while team work has been important in IT develop-
ment in the past, it is has now become vital.

Style First Project L ast Project
T eam m em ber 78.6% 100.0%
W orkin g solo 21.4% 0.0%

Table 7: Team work by Project

Thus applications are becoming more complex, both in terms
of functionality offered and consequently in their development.
Now that some of the important factors of the past and the present
of IT systems development have been discussed, some thoughts
on the future are presented.

THE FUTURE
With the rapid rate of change in the IT field it is very difficult

for developers to see what the future trends might be. After analysing
the past changes and current situation the following points are
suggested as likely directions for the future of software develop-
ment in the short term.

The trend of moving to higher level languages is sure to con-
tinue in the effort to produce quality systems efficiently. Hard-
ware advances make the processing overheads incurred by these
languages less significant.

There needs to be some consolidation in Web development
and there are likely to be numerous tools and languages developed
that attempt to do this. One technology that may prove important
is Microsoft’s ASP+ Web Forms, which will allow the develop-
ment of Web applications in a similar way to Visual Basic. The ease
with which these developers can produce complete Web applica-
tions and the increasing usage of ASP (see Table 2) makes this a

technology to watch in the coming months. (Microsoft, 2000a;
Microsoft, 2000b).

Java has progressed from experimental to implemented sys-
tems faster than any language except VB. Considering its rise in
popularity and wide usage and successive releases to remedy the
slowness in execution, Java can be expected to remain a main-
stream programming language for some time to come (Berst, 2000a;
Babcock, 2000).

Developers will experiment with other types of languages.
Non-conventional languages may be used to produce specific com-
ponents or applications in the areas for which the language is
intended..

Object-orientation appears to remain dominant, but the com-
ponent paradigm is likely to gain ground, especially with the im-
portance of the Web.

The Web is likely to play a role in most systems develop-
ment projects, especially as XML is developed to allow for more
powerful applications. A specific example is the Simple Object
Access Protocol (SOAP), a protocol that could provide the inter-
face between virtually any two systems as long as they support
both hypertext transfer protocol (HTTP) and XML. (Skonnard,
2000).

An emerging area of software development is that of mobile
devices. The second generation of mobile phones, using digital
networks, were introduced in the early 1990s and experienced
exponential growth in numbers of users and services associated
with them. The next generation of mobile telecommunications will
include many more wireless data services (Väänänen-Vainio-Mattila
& Ruuska, 1999, pp.24-25). It will be an important area of soft-
ware development. It will create new requirements and limitations
while still providing a rich multimedia experience for an even less
computer literate audience than the Internet.

Thus the future of IT systems development will have in-
creasingly stronger tools that allow developers to produce sys-
tems that address ever more complex functionality, thereby build-
ing applications that will enhance the user’s productivity, not re-
strict it. As the tools become more powerful more of the technical
correctness will be supplied by the tool, but more creativity will be
required of the developer to adapt to and to use new technologies
to produce better IT systems.

CONCLUSION
IT systems play a vital role in modern civilisation. There is

virtually no industry that does not use some form of
computerisation and many are totally dependent on computers to
control their operations. Software development will change
unrecognisably in the future, as it has in the past, and it is not
possible to predict how with any certainty (Leveson, 1997, p.129).
This paper attempts to present the future of software develop-
ment, in terms of the factors from its past.

Programming languages have seen to be continually raising
the level of abstraction, hiding the details of implementation from
developers. This allows them to focus their efforts on achieving
the best solution, rather than how to do it. The languages used have
changed with the type of the majority of applications that are
developed. Currently, as well as in the near future that means the
most widely used languages will be visual development languages
that produce Web applications. Coding styles have evolved meth-
ods for making programs easier and quicker to develop and to
maintain by building them out of units which can be changed inde-
pendently and reused in many systems. The independent units
include the splitting of the application into data, logic and presen-
tation tiers with interfacing protocols to make applications flexible

2001 IRMA International Conference • 325

and scalable. The user interface has become an increasingly impor-
tant part of applications as they become more powerful and are
used by people of all levels of experience to improve their effi-
ciency.

Thus this paper has drawn some conclusions about the fu-
ture of software development in order for current developers to
make themselves better prepared to meet the challenges that lie
ahead.

REFERENCES
Arnold, D. O. (1991). Computers and Society Impact!. New York:

N.Y. : McGraw-Hill.
Babcock, C. (2000). Java: Can Sun control the flood? Inter@ctive

Week [Online]. [cited 3 July 2000] URL http://www.zdnet.com/
enterprise/stories/main/0,10228,2581701,00.html

Berst, J. (2000a). Scott McNealy’s Java Jive [Online]. [cited 3
July 2000]. URL http://www.zdnet.com/anchordesk/stories/
story/0,10738,2582432,00.html

Cornell, G. (1997). Visual Basic 5 from the Group Up. Berkeley,
Ca. : Osborne/McGraw-Hill.

Deen, S. M. (1985). Principles and Practice of Database Systems.
Hampshire : Macmillan.

Edwards, J. (1999). 3-Tier Client/Server at Work (Revised ed.).
New York : John Wiley & Sons.

Finne S., Leijen, D., Meijer E. & Jones S.P. H/Direct: A Binary
Foreign Language Interface for Haskell. ACM SIGPLAN NO-
TICES, 1999, Vol. 34, No. 1, pp. 153-162.

Fortier, P. J. (1997). Database Systems Handbook. New York :
McGraw-Hill.

Goldman, J. E., Rawles, P. T. & Mariga, J. R. (1999). Client/Server
Information Systems. New York : John Wiley & Sons.

Hughes, J. G. (1988). Database Technology A Software Engineer-
ing Approach. New York : Prentice Hall.

Jacobson, I., Griss, M. & Jonsson, P. (1997). Software Reuse.
Reading, Ma. : Addison Wesley Longman.

Kimball, R. (1996). The Data Warehouse Toolkit. New York : John

Wiley & Sons, Inc.
Leveson, N. G. (1997). Software Engineering: Stretching the Lim-

its of Complexity. Communications of the ACM, February
1997, Vol.40, pp.129-131.

McConnell, S. (1996). Rapid Development. Redmond, Washing-
ton : Microsoft Press.

McDermid, J. (1991). Software Engineer’s Reference Book. Ox-
ford : Butterworth-Heinemann.

Microsoft (2000a). Microsoft Primes Millions of Developers for
the Next-Generation Web [WWW Document]. [cited 3 July
2000]. URL http://www.microsoft.com/presspass/press/2000/
feb00/nextgenerationpr.asp

Microsoft (2000b). Visual Studio Enables the Programmable Web
[WWW Docuement]. [cited 3 July 2000] URL http://
msdn.microsoft.com/vstudio/nextgen/technology/Webforms.asp

Nicol, J.R., Getfreund, Y.S., Paschetto, J., Rush, K.S. & Martin, C.
(1999). How the Internet Helps Build Collaborative Multime-
dia Applications. Communications of the ACM January 1999
Vol.42 No.1, pp. 79-85.

Salus, P. H. (1998). Handbook of Programming Languages Vol. 1. :
Macmillan Technical Publishing

Skonnard, A. (2000). SOAP: The Simple Object Access Protocol.
[WWW Document]. [cited 1 August 2000]. Microsoft Internet
Developer, January 2000.

Tapscott, D. (1999). The Power of Electronic Play. Computer
World, May 24 1999, p.32.

Väänänen-Vainio-Mattila, K. & Ruuska, S. Designing Mobile Phones
and Communicators for consumers’ Needs at Nokia. Interac-
tions, September 1999, pp.23-26.

Watson, D. (1989). High-Level Languages and Their Compilers.
Wokingham, England : Addison Wesley.

Walnum, C. (1995). Windows 95 Games SDK Strategy Guide.
Indianapolis, In. : Que.

Yaeger, J. (1995). Programming in RPG/400 2nd ed. Loveland, Co.
: Duke Press.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/future-software-development/31635

Related Content

The Role of U-FADE in Selecting Persuasive System Features
Isaac Wiafe (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 7785-7795).

www.irma-international.org/chapter/the-role-of-u-fade-in-selecting-persuasive-system-features/184474

Algorithms for Approximate Bayesian Computation
Tom Burrand Alexei Skurikhin (2015). Encyclopedia of Information Science and Technology, Third Edition

(pp. 1559-1567).

www.irma-international.org/chapter/algorithms-for-approximate-bayesian-computation/112560

Mobile Enterprise Architecture Framework
Zongjun Liand Annette Lerine Steenkamp (2010). International Journal of Information Technologies and

Systems Approach (pp. 1-20).

www.irma-international.org/article/mobile-enterprise-architecture-framework/38997

Implications of Pressure for Shortening the Time to Market (TTM) in Defense Projects
Moti Frankand Boaz Carmi (2014). International Journal of Information Technologies and Systems

Approach (pp. 23-40).

www.irma-international.org/article/implications-of-pressure-for-shortening-the-time-to-market-ttm-in-defense-

projects/109088

Video Event Understanding
Nikolaos Gkalelis, Vasileios Mezaris, Michail Dimopoulosand Ioannis Kompatsiaris (2015). Encyclopedia of

Information Science and Technology, Third Edition (pp. 2199-2207).

www.irma-international.org/chapter/video-event-understanding/112630

http://www.igi-global.com/proceeding-paper/future-software-development/31635
http://www.irma-international.org/chapter/the-role-of-u-fade-in-selecting-persuasive-system-features/184474
http://www.irma-international.org/chapter/algorithms-for-approximate-bayesian-computation/112560
http://www.irma-international.org/article/mobile-enterprise-architecture-framework/38997
http://www.irma-international.org/article/implications-of-pressure-for-shortening-the-time-to-market-ttm-in-defense-projects/109088
http://www.irma-international.org/article/implications-of-pressure-for-shortening-the-time-to-market-ttm-in-defense-projects/109088
http://www.irma-international.org/chapter/video-event-understanding/112630

