
DOI: 10.4018/IJOSSP.300752

International Journal of Open Source Software and Processes
Volume 13 • Issue 1

﻿
Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

*Corresponding Author

1

ABSTRACT

Mining software repositories in a collaborative environment during software evolution or maintenance
faces challenges due to creation of larger than necessary slices or unnecessary splitting of revision
history and detection of edge level changes. Due to these limitations, GIT and Diff and Merge Tools
do not accurately detect the similarities and changes between versions due to renaming or shifting.
Detection of these similarities accurately helps to detect code clones and change patterns that
improves understandability, knowledge transfer, and tracking changes. Therefore, the authors proposed
fuzzy-based hybrid technique to detect the similarities/changes between versions considering RS by
enriching the revision history at three granularities: file, class, and method level. Thirty percent more
entities have been found similar/change by deriving classification model with f-score and ROC area
more than 0.985 and 0.994 respectively for all applications. Hence, the proposed technique improves
productivity, reusability, and maintainability with respect to VCA.

Keywords
Changes, Diff and Merge Tools, Maintenance, Refactoring, Repositories, Revision History, Similarity, Software
Evolution

INTRODUCTION

Mining Software Repositories (MSR) is widely used during the software evolution and maintenance
phase for Version-Controlled Applications (VCA). During the evolution of code base with time,
Software Repositories (SR) records the historical information in respect of versions/revisions for
VCA (Agrawal et al., 2020). Analysis of these SR for different versions helps in identification of
code clones (Roy et al., 2007) and change patterns that further enhances understandability, knowledge
transfer and tracking similarities/changes in collaborative work. GIT, Open Source Distributed Version
Control System (OSDVCS) is the most frequently used tool for collaborative work (GIT, n.d.). There
are three challenges that restrict these MSR approaches in using SR-

SBHDetector:
A Fuzzy-Based Hybrid Approach to Detect
Renaming and Shifting Between Versions
Ritu Garg, Indira Gandhi Delhi Technical University for Women, India*

Rakesh Kumar Singh, Indira Gandhi Delhi Technical University for Women, India

 https://orcid.org/0000-0001-8729-2293

International Journal of Open Source Software and Processes
Volume 13 • Issue 1

2

•	 Low performance for larger than necessary slices of Revision History: SR incorporates the
changes in artifacts of software code shared among multiple developers. Usually, these changes
are pushed/pulled using the diff and merge techniques to/from remote repository that may clutter
the SR. These changes are recorded at coarse granularity (at file level) resulting in larger than
necessary slices of Revision History (RH) (Zhu et al., 2020). Example- In order to extract changes
at finer granularities (class and method level), it requires preprocessing for History Slicing using
developer scripts that may be cumbersome and error-prone (Higo et al., 2020).

•	 Restructuring may lead to unnecessary splitting of RH esp. where similarity index is low
between the entities: The sequence of changes may involve major or minor refactoring along with
recording of change-type such as renaming, moving or splitting but restricted with limitations of
default similarity (Higo et al., 2020). Example- If similarity percentage of an entity before and after
revision falls below 50% then GIT accept the change as creation of entity in Successive Version
(SV) and removal of entity from preceding Version (PV). Due to this, it leads to unnecessary
splitting of RH for that entity which makes the entity un-trackable for previous versions.

•	 Textual similarity lacks in identification of changes at edge level: GIT is content addressable
(Git-Internals-Git-Objects, n.d.), thus offers textual similarity in software code. However,
existing approaches treats software code as graphs where changes may occur both at node and
edge level (Störrle, 2015). Due to this, change in any reference to a particular object or hierarchy
of interrelated object or change in number of calls to an object or dependencies etc. are not
recorded in RH.

Therefore, changes in artifacts are missing at finer granularities and edge level leading to
incomplete RH (Tang et al., 2022). Moreover, inaccuracy arises from the splitting of RH that breaks
the link for changes in all PV by treating them as new entities with fresh RH. Due to this incomplete
or inaccurate RH, it is very difficult to track these entities for MSR approaches (Agrawal et al., 2020)
making it unreliable and time-consuming (Grund et al., n.d.). In order to overcome these challenges,
the authors proposed SBHDetector, a technique with fuzzy based hybrid approach for the detection
of similarities/changes between the versions. It classifies the similarities/changes in coarse & finer
granularities even at edge level accounting both renaming and shifting of entities when empirically
validated using eight Subject Systems (SS). The classification model has been built with high precision
and recall in all the cases to identify similarities/changes where Random Forest outperforms in majority
SS. Thus, it proves the generalizability of proposed approach and helps to improve productivity,
reusability and maintainability with respect to VCA.

Comparing proposed technique with Understand provides 30% more similarities/changes at
entity level where Understand fails to capture renaming and shifting. Whereas comparing it with GIT
reports increase in number of similar/changed entities at file level by identifying those entities also,
where GIT splits the RH due to less similarity, and preserve the linking in RH with PV. Therefore,
the proposed technique provides better accuracy and completeness in RH for tracking of similarity/
change analysis among entities during software evolution. Improvement in tracking of entities further
improves the process of change management and origin analysis.

The organization for rest of the paper is as under where section 2 discusses the related work and
motivation for the fuzzy based hybrid approach. Section 3 represents the fuzzy based hybrid technique
along with the block diagram used in SBHDetector. Section 4 deals with results and discussion
corresponding to the evaluation of proposed technique. It follows section 5 as risks to validity for
proposed approach and section 6 briefs the conclusion and future work.

RELATED WORK AND MOTIVATION

Different researches focused on identification of the similarities or changes at file, method and class
level for MSR approaches. The authors targeted techniques that uses Diff & Merge operation in

16 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/sbhdetector/300752

Related Content

Free Software Development: Cooperation and Conflict in a Virtual

Organizational Culture
Margaret S. Elliottand Walt Scacchi (2005). Free/Open Source Software

Development (pp. 152-173).

www.irma-international.org/chapter/free-software-development/18724

An Approach to Mitigate Malware Attacks Using Netfilter's Hybrid Frame in

Firewall Security
Nivedita Nahar, Prerna Dewanand Rakesh Kumar (2018). International Journal of

Open Source Software and Processes (pp. 32-61).

www.irma-international.org/article/an-approach-to-mitigate-malware-attacks-using-netfilters-

hybrid-frame-in-firewall-security/206886

Locating Faulty Source Code Files to Fix Bug Reports
Abeer Hamdyand Abdelrahman E. Arabi (2022). International Journal of Open Source

Software and Processes (pp. 1-15).

www.irma-international.org/article/locating-faulty-source-code-files-to-fix-bug-reports/308791

Corpus Tools and Technology
 (2020). Computer Corpora and Open Source Software for Language Learning:

Emerging Research and Opportunities (pp. 22-43).

www.irma-international.org/chapter/corpus-tools-and-technology/256698

Creating Open Source Lecture Materials: A Guide to Trends, Technologies,

and Approaches in the Information Sciences
William H. Hsu (2015). Open Source Technology: Concepts, Methodologies, Tools,

and Applications (pp. 336-363).

www.irma-international.org/chapter/creating-open-source-lecture-materials/120924

http://www.igi-global.com/article/sbhdetector/300752
http://www.igi-global.com/article/sbhdetector/300752
http://www.irma-international.org/chapter/free-software-development/18724
http://www.irma-international.org/article/an-approach-to-mitigate-malware-attacks-using-netfilters-hybrid-frame-in-firewall-security/206886
http://www.irma-international.org/article/an-approach-to-mitigate-malware-attacks-using-netfilters-hybrid-frame-in-firewall-security/206886
http://www.irma-international.org/article/locating-faulty-source-code-files-to-fix-bug-reports/308791
http://www.irma-international.org/chapter/corpus-tools-and-technology/256698
http://www.irma-international.org/chapter/creating-open-source-lecture-materials/120924

