
 243

Chapter XVII
Formal Methods for Specifying

and Analyzing Complex
Software Systems

Xudong He
Florida International University, USA

Huiqun Yu
East China University of Science and Technology, China

Yi Deng
Florida International University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstRAct

Software has been a major enabling technology for advancing modern society, and is now an indispens-
able part of daily life. Because of the increased complexity of these software systems, and their critical
societal role, more effective software development and analysis technologies are needed. How to develop
and ensure the dependability of these complex software systems is a grand challenge. It is well known
that a highly dependable complex software system cannot be developed without a rigorous development
process and a precise specification and design documentation. Formal methods are one of the most
promising technologies for precisely specifying, modeling, and analyzing complex software systems.
Although past research experience and practice in computer science have convincingly shown that it is
not possible to formally verify program behavior and properties at the program source code level due
to its extreme huge size and complexity, recently advances in applying formal methods during software
specification and design, especially at software architecture level, have demonstrated significant benefits
of using formal methods. In this chapter, we will review several well-known formal methods for software
system specification and analysis. We will present recent advances of using these formal methods for
specifying, modeling, and analyzing software architectural design.

244

Formal Methods for Specifying and Analyzing Complex Software Systems

IntRODUctIOn

It is wildly agreed that the main obstacle to “help
computers help us more” and relegate to these
helpful partners even more complex and sensitive
tasks is not inadequate speed and unsatisfactory
raw computing power in the existing machines,
but our limited ability to design and implement
complex systems with sufficiently high degree
of confidence in their correctness under all cir-
cumstances (Clarke, Grumberg, & Peled, 1999).
This problem of design validation—ensuring
the correctness of the design at the earliest
stage possible—is the major challenge in any
responsible system development process, and the
activities intended for its solution occupy an ever
increasing portion of the development cycle cost
and time budgets.

Two major approaches to analyze the system
quality are testing and verification. Traditional
and widely used quality assurance techniques
based on software testing are inadequate to ensure
the reliability of complex systems. In addition
to the inherent limitation of testing from being
able to guarantee system properties, many of
today’s software systems are designed to adapt
in a wide range of environments and evolve over
time. Because of this, the range of possible testing
scenarios at code level becomes extremely large
and potentially uncontrollable.

Formal methods (Harel, 1987; Hoare, 1985;
Manna & Pnueli, 1992; Milner, 1989; Murata,
1989) for software specification and verification
have been viewed as a promising way to address
the problems associated with testing. These meth-
ods are precise and rigorous and can prevent and
detect system defects introduced at the early stages
of development, which are often more costly to
fix and have more severe consequences. Despite
tremendous advances (Clarke & Wing, 1996),
however, widely spread application of formal
methods in practical system development still
remains to be seen (Craigen, Gerhart, & Ralston,
1995). A major cause for the problem is that results
on formal methods are to large extent fragmented.

Formal techniques are viewed as difficult and
expensive to use because their application is ad
hoc, and they are too fine grained to deal with the
complexity in practical-sized development. Thus
it is necessary to precisely define, measure, and
analyze software dependability at a level higher
than source code. Recent research (Knight, 2002)
has shown that it is especially important to ex-
plore technologies how to handle dependability
attributes at the software architecture level for
the following reasons:

• A software architecture description presents
the highest-level design abstraction of a
system (Shaw & Garlan, 1996). As a result,
it is relative simple compared to a detailed
system design. Thus it is more likely to
develop an effective methodology to study
dependability attributes.

• As the highest-level design abstraction, a
software architecture description precedes
and logically and structurally influences
other system development products. Thus
an error in a software architecture has a
much larger impact than an error introduced
at a later development stage. Prevention and
detection of errors at software architectural
level are thus extremely important. Hence, it
is necessary to study and measure depend-
ability attributes before the actual software
systems are developed and deployed.

Many studies, especially those done at the
Software Engineering Institute at Carnegie Mellon
University (Kazman, Klein, & Clements, 2000),
have shown that a software architecture reveals,
influences, or even dictates many system depend-
ability features such as reliability, performance,
security, and faulty-tolerance. Therefore, the
dependability attributes measured at software
architecture level can serve as the basis to predict
and validate the dependability attributes of the
developed and deployed systems.

In this chapter, we will review several well-
known formal methods for complex software

20 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/formal-methods-specifying-analyzing-

complex/30026

Related Content

Retrofitting Existing Web Applications with Effective Dynamic Protection Against SQL Injection

Attacks
San-Tsai Sunand Konstantin Beznosov (2012). Security-Aware Systems Applications and Software

Development Methods (pp. 169-189).

www.irma-international.org/chapter/retrofitting-existing-web-applications-effective/65848

Legacy Systems towards Aspect-Oriented Systems
Noopur Goel (2015). Achieving Enterprise Agility through Innovative Software Development (pp. 262-286).

www.irma-international.org/chapter/legacy-systems-towards-aspect-oriented-systems/135231

Dynamic Business Collaborations Through Contract Services
Surya Nepaland Shiping Chen (2011). International Journal of Systems and Service-Oriented Engineering

(pp. 60-82).

www.irma-international.org/article/dynamic-business-collaborations-through-contract/61316

An Assessment of Incorporating Log-Logistic Testing Effort Into Imperfect Debugging Delayed S-

Shaped Software Reliability Growth Model
Nesar Ahmad, Aijaz Ahmadand Sheikh Umar Farooq (2021). International Journal of Software Innovation

(pp. 23-41).

www.irma-international.org/article/an-assessment-of-incorporating-log-logistic-testing-effort-into-imperfect-debugging-

delayed-s-shaped-software-reliability-growth-model/290432

An Approach to Co-Dependent Value Based Internet Advertisement Auction
Satoshi Takahashi, Tokuro Matsuoand Roger Y. Lee (2013). International Journal of Software Innovation

(pp. 1-15).

www.irma-international.org/article/an-approach-to-co-dependent-value-based-internet-advertisement-auction/89771

http://www.igi-global.com/chapter/formal-methods-specifying-analyzing-complex/30026
http://www.igi-global.com/chapter/formal-methods-specifying-analyzing-complex/30026
http://www.irma-international.org/chapter/retrofitting-existing-web-applications-effective/65848
http://www.irma-international.org/chapter/legacy-systems-towards-aspect-oriented-systems/135231
http://www.irma-international.org/article/dynamic-business-collaborations-through-contract/61316
http://www.irma-international.org/article/an-assessment-of-incorporating-log-logistic-testing-effort-into-imperfect-debugging-delayed-s-shaped-software-reliability-growth-model/290432
http://www.irma-international.org/article/an-assessment-of-incorporating-log-logistic-testing-effort-into-imperfect-debugging-delayed-s-shaped-software-reliability-growth-model/290432
http://www.irma-international.org/article/an-approach-to-co-dependent-value-based-internet-advertisement-auction/89771

