154

Chapter XII
Decision Rule for Investment
in Reusable Code

Roy Gelbard
Bar-Ilan University, Israel

ABSTRACT

Reusable code helps to decrease code errors, code units and therefore development time. It serves to
improve quality and productivity frameworks in sofiware development. The question is not HOW to
make the code reusable, but WHICH amount of software components would be most beneficial (i.e. cost-
effective in terms of reuse), and WHAT method should be used to decide whether to make a component
reusable or not. If we had unlimited time and resources, we could write any code unit in a reusable way.
In other words, its reusability would be 100%. However, in real life, resources and time are limited. Given
these constraints, decisions regarding reusability are not always straightforward. The current chapter
focuses on decision-making rules for investing in reusable code. It attempts to determine the parameters,
which should be taken into account in decisions relating to degrees of reusability. Two new models are
presented for decisions-making relating to reusability: (i) a restricted model, and (ii) a non-restricted
model. Decisions made by using these models are then analyzed and discussed.

INTRODUCTION tion, etc.) than inducing a solution from a similar
problem for which such efforts have already been

Software reuse helps decrease code errors, code expended. Therefore, software reuse challenges

units and, therefore, development time; thus
improving quality and productivity of software
development. Reuse is based on the premise
that educing a solution from the statement of a
problem involves more effort (labor, computa-

are structural, organizational and managerial, as
well as technical.

Economic considerations and cost-benefit
analysesin general must be atthe center of any dis-
cussion of software reuse; hence, the cost-benefit
issue is not HOW to make the code reusable, but

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



Decision Rule for Investment in Reusable Code

WHICH amount of software components would
be most beneficial (i.e. cost-effective for reuse),
and WHAT method should be used when deciding
whether to make a component reusable or not.

If we had unlimited time and resources, we
could write any code unitinareusable way. In other
words, its reusability would be 100% (reusability
refers to the degree to which a code unit can be
reused). However, in real life, resources and time
are limited. Given these constraints, reusability
decisions are not always straightforward.

Literature review shows that there are a variety
of models used for calculating-evaluating reuse
effectiveness, butthey are not focused on the issue
of the degree to which a code is reusable. Thus the
real question is how to make reusability pragmatic
and efficient, i.e. a decision rule for investment in
reusable code. The current chapter focuses on the
parameters, which should be taken into account
when making reusability degree decisions. Two
new models are presented here for reusability
decision-making:

. A Non-Restricted Model, which does not
take into account time, resources or invest-
ment restrictions.

. A Restricted Model, which takes the afore-
mentioned restrictions into account.

The models are compared, using the same data, to
test whether they lead to the same conclusions or
whether a contingency approach is preferable.

BACKGROUND

Notwithstanding differences between reuse ap-
proaches, it is useful to think of software reuse
in terms of attempts to minimize the average cost
of a reuse occurrence (Mili et al 1995).

[Search + (1-p) * (ApproxSearch +q * Adapta-
tion old + (1-q)* Development new )]

Where:

. Search (ApproxSearch) is the average cost
of formulating a search statement of a library
of reusable components and either finding
one that matches the requirements exactly
(appreciatively), or being convinced that
none exists.

. Adaptation old is the average cost of adapt-
ing a component returned by approximate
retrieval.

. Development new is the average cost of
developing a component that has no match,
exact or approximate, in the library.

Forreuse to be cost-effective, the aforementioned
must be smaller than:

p *Development exact +(1-p)* q * Development
approx +(1-p)* (1-q)” Development new)

Where:

. Development exact and Development new
represent the average cost of developing
custom-tailored versions of components
in the library that could be used as is, or
adapted, respectively. Note that all these
averages are time averages, and not averages
of individual components, i.e. a reusable
component is counted as many times as it
is used.

Developing reusable software aims at maxi-
mizing P (probability of finding an exact match)
and Q (probability of finding an approximate
match), i.e. maximizing the coverage of the ap-
plication domain, and minimizing adaptation
for a set of common mismatches, i.e. packaging
components, in such a way that the most common
old mismatches are handled easily. Increasing P
and Q does not necessarily mean putting more
components in the library; it could also mean
adding components that are more frequently

155



5 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/decision-rule-investment-reusable-code/30021

Related Content

Intelligent Software Agents Analysis in E-Commerce |l

Xin Luoand Somasheker Akkaladevi (2009). Software Applications: Concepts, Methodologies, Tools, and
Applications (pp. 1452-1457).
www.irma-international.org/chapter/intelligent-software-agents-analysis-commerce/29457

Class Imbalance Learning to Heterogeneous Cross-Software Projects Defect Prediction

Rohit Vashishtand Syed Afzal Murtaza Rizvi (2022). International Journal of Software Innovation (pp. 1-18).
www.irma-international.org/article/class-imbalance-learning-to-heterogeneous-cross-software-projects-defect-
prediction/292021

Assessing the Value of Formal Control Mechanisms on Strong Password Selection
Jeff Crawford (2013). International Journal of Secure Software Engineering (pp. 1-17).
www.irma-international.org/article/assessing-the-value-of-formal-control-mechanisms-on-strong-password-
selection/83632

Metrics for Project Management Methodologies Elicitation

Patricia R. Cristaldo, Daniela Lopez De Luiseand Lucas La Pietra (2023). Perspectives and Considerations
on the Evolution of Smart Systems (pp. 187-212).
www.irma-international.org/chapter/metrics-for-project-management-methodologies-elicitation/327531

An Ontology for BPM in Digital Transformation and Innovation

Silvia Bogea Gomes, Flavia Maria Santoroand Miguel Mira da Silva (2020). International Journal of
Information System Modeling and Design (pp. 52-77).
www.irma-international.org/article/an-ontology-for-bpm-in-digital-transformation-and-innovation/255112



http://www.igi-global.com/chapter/decision-rule-investment-reusable-code/30021
http://www.irma-international.org/chapter/intelligent-software-agents-analysis-commerce/29457
http://www.irma-international.org/article/class-imbalance-learning-to-heterogeneous-cross-software-projects-defect-prediction/292021
http://www.irma-international.org/article/class-imbalance-learning-to-heterogeneous-cross-software-projects-defect-prediction/292021
http://www.irma-international.org/article/assessing-the-value-of-formal-control-mechanisms-on-strong-password-selection/83632
http://www.irma-international.org/article/assessing-the-value-of-formal-control-mechanisms-on-strong-password-selection/83632
http://www.irma-international.org/chapter/metrics-for-project-management-methodologies-elicitation/327531
http://www.irma-international.org/article/an-ontology-for-bpm-in-digital-transformation-and-innovation/255112

