
278

Chapter XV
Continuous Curriculum

Restructuring in a Graduate
Software Engineering Program

Daniela Rosca
Monmouth University, USA

William Tepfenhart
Monmouth University, USA

Jiacun Wang
Monmouth University, USA

Allen Milewski
Monmouth University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

The development, maintenance and delivery of a software engineering curriculum present special
challenges not found in other engineering disciplines. The continuous advances of the field of software
engineering impose a high frequency of changes reflected in the curriculum and course content. This
chapter describes the challenges of delivering a program meeting the needs of industry and students.
It presents the lessons learned during 21 years of offering such a program, and dealing with issues
pertaining to continuous curriculum and course content restructuring, the influence of the student body
on the curriculum and course content. The chapter concludes with our recommendations for those who
are seeking to create a graduate program in software engineering, with a special note on the situations
where an undergraduate and graduate program will need to coexist in the same department.

INTRODUCTION

The objective of this chapter is to prepare those
who are seeking to introduce a graduate program

in software engineering (SE) for the challenges
they will face. Towards that end, the lessons
learned during 21 years of offering such a program
at Monmouth University will be presented. As it

 279

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

will be demonstrated, the development, main-
tenance and delivery of a software engineering
curriculum present special challenges not found
in other engineering disciplines.

This chapter describes the challenges of deliv-
ering a program that meets the needs of industry
and students in a highly dynamic field. The evolu-
tion of the curriculum induced by the domain’s
continuous advances and evolution in industry
practice will be presented. The special meaning
of continuous course content development in
software engineering will be argued through is-
sues pertaining to dated textbooks, ever-changing
programming languages, operating systems, and
software tools. The chapter will also present our
experience in dealing with the diversity of the
student body, and its influence on the curriculum
and course content. The chapter will conclude with
our recommendations for constructing a similar
program, with a special emphasis on situations
where an undergraduate and graduate program
in software engineering will need to coexist in
the same department.

BACKGROUND

Although software engineering was recognized as
a field in 1968 at the NATO sponsored conference
on the subject (Naur, 1968), it took universities and
colleges a significant amount of time to respond
to that fact. It was not until 1986 that Monmouth
University (MU) started a graduate program dedi-
cated to software engineering, which was offered
by its Computer Science Department. In 1995
Monmouth created the first Software Engineering
Department in United States. Now it is one of the
pioneer universities offering a bachelor’s degree
in software engineering.

One motivation for creating a separate soft-
ware engineering program and department was
the awareness of the skills that industry would
like students to have upon graduation, which are
not stressed by most computer science curricula.

These skills include teamwork, communications,
time management, engineering problem solving,
quantitative and qualitative process management,
reuse, requirements management, system archi-
tecture, testing and project management.

As one of the few universities with extensive
and comprehensive experience in offering soft-
ware engineering programs, we have learned
much about providing such a program. With more
and more undergraduate software engineering
programs appearing, we feel it is beneficial to
other institutions for us to share the problems
encountered and lessons learned over the past 21
years. A summary of the problems encountered
and the lessons learned are presented here:

•	 Continuous curriculum restructuring.
One can expect to revisit the overall curricu-
lum of the program every four to five years,
in order to accommodate changes in industry
practice and educational expectations. This
is reflected also in the historical investiga-
tion of the graduate software engineering
curriculum reported in (Duggins, 2002).

•	 Continuous course content restructuring.
It is critically needed due to the dynamics
of the field. The continuous development
of course content implies also a continuous
development of course projects, and dealing
with dated textbooks, ever changing operat-
ing systems, programming languages and
software tools.

•	 Hiring and retaining faculty. The need for
new faculty to have a record of sustained
scholarly accomplishments and industrial
experience enforces great restrictions on the
number of available candidates, as it was also
notified by Glass (2003). Retaining faculty
is complicated by the fact that in addition
to performing their normal teaching duties
SE faculty must continually keep up with
changes in the field as a whole.

•	 Influence of the diversity of the student
body on the curriculum and course

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/continuous-curriculum-restructuring-graduate-

software/29604

Related Content

Multirate Techniques in Filter Design and Implementation
Ljiljana Milic (2009). Multirate Filtering for Digital Signal Processing: MATLAB Applications (pp. 274-294).

www.irma-international.org/chapter/multirate-techniques-filter-design-implementation/27218

Open Source Software and the Corporate World
Sigrid Kelsey (2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp. 2338-

2345).

www.irma-international.org/chapter/open-source-software-corporate-world/29509

Exploring the Business Process Agility Issue: An Experience Report
Nancy Alexopoulou, Mara Nikolaidouand Drakoulis Martakos (2013). International Journal of Information

System Modeling and Design (pp. 25-41).

www.irma-international.org/article/exploring-business-process-agility-issue/75463

Malware Forensics: An Application of Scientific Knowledge to Cyber Attacks
C. V. Suresh Babu, G. Suruthiand C. Indhumathi (2023). Malware Analysis and Intrusion Detection in

Cyber-Physical Systems (pp. 285-312).

www.irma-international.org/chapter/malware-forensics/331309

Validating Security Design Pattern Applications by Testing Design Models
Takanori Kobashi, Nobukazu Yoshioka, Haruhiko Kaiya, Hironori Washizaki, Takano Okuboand Yoshiaki

Fukazawa (2014). International Journal of Secure Software Engineering (pp. 1-30).

www.irma-international.org/article/validating-security-design-pattern-applications-by-testing-design-models/121680

http://www.igi-global.com/chapter/continuous-curriculum-restructuring-graduate-software/29604
http://www.igi-global.com/chapter/continuous-curriculum-restructuring-graduate-software/29604
http://www.irma-international.org/chapter/multirate-techniques-filter-design-implementation/27218
http://www.irma-international.org/chapter/open-source-software-corporate-world/29509
http://www.irma-international.org/article/exploring-business-process-agility-issue/75463
http://www.irma-international.org/chapter/malware-forensics/331309
http://www.irma-international.org/article/validating-security-design-pattern-applications-by-testing-design-models/121680

