
 3455

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.16
Model-Driven Software

Refactoring
Tom Mens

University of Mons-Hainaut, Belgium

Gabriele Taentzer
Philipps-Universität Marburg, Germany

Dirk Müller
Chemnitz University of Technology, Germany

Abstract

In this chapter, we explore the emerging research
domain of model-driven software refactoring.
Program refactoring is a proven technique that
aims at improving the quality of source code.
Applying refactoring in a model-driven software
engineering context raises many new challenges
such as how to define, detect and improve model
quality, how to preserve model behavior, and so
on. Based on a concrete case study with a state-of-
the-art model-driven software development tool,
AndroMDA, we explore some of these challenges
in more detail. We propose to resolve some of
the encountered problems by relying on well-
understood techniques of meta-modeling, model
transformation and graph transformation.

Introduction

In the current research and practice on software
engineering, there are two very important lines of
research for which tool support is becoming widely
available. The first line of research is program
refactoring, the second one is model-driven
software engineering. To this date, however,
the links and potential synergies between these
two lines of research have not been sufficiently
explored. This will be the main contribution of
this chapter.

Model-Driven Software Engineering

In the realm of software engineering, we are
witnessing an increasing momentum towards the

3456

Model-Driven Software Refactoring

use of models for developing software systems.
This trend commonly referred to as model-driven
software engineering, emphasizes on models as
the primary artifacts in all phases of software
development, from requirements analysis over
system design to implementation, deployment,
verification and validation. This uniform use
of models promises to cope with the intrinsic
complexity of software-intensive systems by
raising the level of abstraction, and by hiding
the accidental complexity of the underlying
technology as much as possible (Brooks, 1995).
The use of models thus opens up new possibilities
for creating, analyzing, manipulating and
formally reasoning about systems at a high level
of abstraction.

To reap all the benefits of model-driven
engineering, it is essential to install a sophisticated
mechanism of model transformation, that enables
a wide range of different automated activities such
as translation of models (expressed in different
modeling languages), generating code from
models, model refinement, model synthesis or
model extraction, model restructuring etc. To
achieve this, languages, formalisms, techniques
and tools that support model transformation are

needed. More importantly, their impact on the
quality and semantics of models needs to be
better understood.

Program Refactoring

Refactoring is a well-known technique to improve
the quality of software. Martin Fowler (1999) de-
fines it as “A change made to the internal structure
of software to make it easier to understand and
cheaper to modify without changing its observ-
able behavior”.

The research topic of refactoring has been
studied extensively at the level of programs (i.e.,
source code). As a result, all major integrated
software development environments provide
some kind of automated support for program
refactoring.

As a simple example of a program refactoring,
consider the refactoring Extract Method, one of
the more than 60 refactorings proposed by Fowler.
Essentially, it is applied to a method in which part
of the method body needs to be extracted into a
new method that will be called by the original one.
The situation before this program refactoring on
a piece of Java source code is shown in Figure

 protected LectureVO[] handleFindLecture
 (java.lang.String title, domain.Weekday day, domain.Time time)
 throws java.lang.Exception
* { SearchCriteria c = new SearchCriteria();
* c.setDay(day);
* c.setTitle(title);
* c.setTime(time);
 Collection coll =
 getLectureDao().findLecture(LectureDao.TRANSFORM_

LECTUREVO,c);
 LectureVO[] lectures = new LectureVO[coll.size()];

Figure 1. Java source code example before applying the Extract Method program refactoring (©2007
Tom Mens, UMH. Used with permission)

32 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/model-driven-software-refactoring/29571

Related Content

Facilitating eLearning with Social Software: Attitudes and Usage from the Student's Point of

View
Reinhard Bernsteiner, Herwig Ostermannand Roland Staudinger (2009). Software Applications: Concepts,

Methodologies, Tools, and Applications (pp. 1979-1997).

www.irma-international.org/chapter/facilitating-elearning-social-software/29490

Filter/Wrapper Methods for Gene Selection and Classification of Microarray Dataset
Norreddine Mekour, Reda Mohamed Hamouand Abdelmalek Amine (2019). International Journal of

Software Innovation (pp. 65-80).

www.irma-international.org/article/filterwrapper-methods-for-gene-selection-and-classification-of-microarray-

dataset/230924

Assessing Modularity in Java Programs
Jorge Manjarrez-Sanchezand Victor Navarro Belmonte (2014). Agile Estimation Techniques and Innovative

Approaches to Software Process Improvement (pp. 31-46).

www.irma-international.org/chapter/assessing-modularity-in-java-programs/100269

Proposal of Iterative Genetic Algorithm for Test Suite Generation
Ankita Bansal, Abha Jain, Abhijeet Anandand Swatantra Annk (2021). International Journal of Information

System Modeling and Design (pp. 111-130).

www.irma-international.org/article/proposal-of-iterative-genetic-algorithm-for-test-suite-generation/273229

Combining UML Profiles to Design Serious Games Dedicated to Trace Information in Decision

Processes
Laure Vidaud Barral, Francois Pinet, Jean-Marc Tacnetand Anne-Laure Jousselme (2020). International

Journal of Information System Modeling and Design (pp. 1-27).

www.irma-international.org/article/combining-uml-profiles-to-design-serious-games-dedicated-to-trace-information-in-

decision-processes/255110

http://www.igi-global.com/chapter/model-driven-software-refactoring/29571
http://www.irma-international.org/chapter/facilitating-elearning-social-software/29490
http://www.irma-international.org/article/filterwrapper-methods-for-gene-selection-and-classification-of-microarray-dataset/230924
http://www.irma-international.org/article/filterwrapper-methods-for-gene-selection-and-classification-of-microarray-dataset/230924
http://www.irma-international.org/chapter/assessing-modularity-in-java-programs/100269
http://www.irma-international.org/article/proposal-of-iterative-genetic-algorithm-for-test-suite-generation/273229
http://www.irma-international.org/article/combining-uml-profiles-to-design-serious-games-dedicated-to-trace-information-in-decision-processes/255110
http://www.irma-international.org/article/combining-uml-profiles-to-design-serious-games-dedicated-to-trace-information-in-decision-processes/255110

