
 2883

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.16
Morality and Pragmatism in

Free Software and Open Source

Dave Yeats
Auburn University, USA

AbstrAct

This chapter analyzes the differences between
the philosophy of the Free Software Foundation
(FSF) as described by Richard Stallman and the
open source movement as described in the writ-
ings of Eric Raymond. It argues that free software
bases its activity on the argument that sharing
code is a moral obligation and open source bases
its activity on a pragmatic argument that sharing
code produces better software. By examining the
differences between these two related software
movements, this chapter enables readers to con-
sider the implications of these differences and
make more informed decisions about software
use and involvement in various software devel-
opment efforts.

IntroductIon

As governments around the world search for an
alternative to Microsoft software, the open source

operating system Linux finds itself in a perfect
position to take market share from Microsoft
Windows. Governments in France, Germany, The
Netherlands, Italy, Spain, and the United Kingdom
use Linux to encourage open standards, promote
decentralized software development, provide
improved security, and reduce software costs
(Bloor, 2003). The Chinese government strongly
supports Linux as its operating system of choice
because Chinese experts have complete access to
the source code and can examine it for security
flaws (Andrews, 2003). In Brazil, leftist activ-
ists gathered to promote the use of open source
software (OSS) (Clendenning, 2005).

There is a connection between the technologi-
cal reasons for choosing open source software and
the political ones. Many governments see open
source as a way to promote a socialistic agenda
in their choices of technology. Open source ad-
vocates, however, do not necessarily make these
connections between the software development
methods involved in open source and political
movements of governments. There is evidence,

2884

Morality and Pragmatism in Free Software and Open Source

however, that leaders in the open source move-
ment have expressed their rationale for advocating
opening the source code of software.

The open source movement can trace its roots
back to an alternate, still very active, software
movement known as free software. While open
source and free software can (and do) coexist in
many ways, there are some essential differences
that distinguish the two groups from one another.
Perhaps most notably, the free software movement
is based on a belief in a moral or ethical approach
to software development, while open source takes
a much more pragmatic view. While both groups
argue for the open sharing of source code, each
has its own reason for doing so. Understanding
the differences between open source and free
software can help open source researchers use
more precise terminology and preserve the intent
of each of these groups rather than assuming that
they are interchangeable.

The following chapter begins with a brief
historical overview of the free software and
open source movements and highlights some of
the main beliefs of each. The chapter then offers
an examination of both the moral and pragmatic
aspects of open source software. The conclusion
invites readers to consider the implications of the
differences between the two viewpoints and sug-
gests ways for readers to apply this information
when making choices about software.

bAcKground

The open source movement grew out of the soft-
ware development practices in academic settings
during the 1970s. During those early years of soft-
ware development, computer scientists at colleges
and universities worked on corporate-sponsored
projects. The software developed for these projects
was freely shared between universities, fostering
an open, collaborative environment in which many
developers were involved in creating, maintaining,
and evaluating code (Raymond, 1999).

In his A Brief History of Open Source article,
Charlie Lowe (2001) describes the end of open
and collaborative methods of developing computer
software in the 1980s when the corporate sponsors
of academic software projects began to copyright
the code developed for them. Corporations claimed
that the university-run projects created valuable
intellectual property that should be protected un-
der law. This, of course, was just one of the signs
of the shift from the commodity-based economy
in the U.S. to a knowledge-based one. The wave
of copyrights threatened to end the collaboration
between computer scientists and slow the evolution
of important projects. It looked as if the computer
scientists would be required to work in smaller
groups on proprietary projects.

Richard Stallman (1999) reports that he cre-
ated the GNU General Public License (GPL) to
maintain the ability to collaborate with other
computer scientists on software projects, without
restriction. The name GNU is a self-reflexive
acronym meaning “GNU’s Not UNIX,” a play
on words that pays homage to and differentiates
itself from the UNIX legacy.1 Stallman was con-
cerned that the UNIX operating system, created
during the collaborative era of the 1970s, would
no longer be supported by new programs that used
its stable and robust architecture when access to
the source code was cut off. Stallman started the
GNU initiative (which enabled the establishment
of the Free Software Foundation [FSF]) to ensure
that new software would be freely available.

The GNU GPL gave programmers the free-
dom to create new applications and license them
to be freely distributable. Specifically, the GNU
GPL gives anyone the right to modify, copy, and
redistribute source code with one important re-
striction: Any new version or copy must also be
published under the GNU GPL to insure that the
improved code continues to be freely available.
Many programmers (both those accustomed to the
academic practices of the 1970s and new computer
enthusiasts) adopted the GNU GPL and continued
to work in open, collaborative systems.

9 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/morality-pragmatism-free-software-open/29541

Related Content

Business Survival Inside and Outside of Chinese IT clusters
Yixuan Wangand Bowen Jiang (2018). International Journal of Systems and Service-Oriented Engineering

(pp. 1-15).

www.irma-international.org/article/business-survival-inside-and-outside-of-chinese-it-clusters/213951

European National Educational School Authorities' Actions Regarding Open Content and Open

Source Software in Education
Riina Vuorikariand Karl Sarnow (2009). Software Applications: Concepts, Methodologies, Tools, and

Applications (pp. 2046-2063).

www.irma-international.org/chapter/european-national-educational-school-authorities/29494

E-Monitoring System: Analyzing the Benefits and Effects of an E-Monitoring System in the

Banks of Kerala
 Bharathiveena V.and Janardhanan Pillai (2022). International Journal of Software Innovation (pp. 1-19).

www.irma-international.org/article/e-monitoring-system/311507

New Approach to Speedup Dynamic Program Parallelization Analysis
Sudhakar Sahand Vinay G. Vaidya (2014). International Journal of Software Innovation (pp. 28-47).

www.irma-international.org/article/new-approach-to-speedup-dynamic-program-parallelization-analysis/120517

Functional Method Engineering
S. B. Goyaland Naveen Prakash (2013). International Journal of Information System Modeling and Design

(pp. 79-103).

www.irma-international.org/article/functional-method-engineering/75465

http://www.igi-global.com/chapter/morality-pragmatism-free-software-open/29541
http://www.irma-international.org/article/business-survival-inside-and-outside-of-chinese-it-clusters/213951
http://www.irma-international.org/chapter/european-national-educational-school-authorities/29494
http://www.irma-international.org/article/e-monitoring-system/311507
http://www.irma-international.org/article/new-approach-to-speedup-dynamic-program-parallelization-analysis/120517
http://www.irma-international.org/article/functional-method-engineering/75465

