
2760

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.8
Trusting Computers Through

Trusting Humans:
Software Verification in a

Safety-Critical Information System

Alison Adam
University of Salford, UK

Paul Spedding
University of Salford, UK

AbstrAct

This article considers the question of how we may
trust automatically generated program code. The
code walkthroughs and inspections of software
engineering mimic the ways that mathematicians
go about assuring themselves that a mathematical
proof is true. Mathematicians have difficulty ac-
cepting a computer generated proof because they
cannot go through the social processes of trusting
its construction. Similarly, those involved in ac-
cepting a proof of a computer system or computer
generated code cannot go through their traditional
processes of trust. The process of software verifi-
cation is bound up in software quality assurance
procedures, which are themselves subject to com-
mercial pressures. Quality standards, including
military standards, have procedures for human

trust designed into them. An action research case
study of an avionics system within a military
aircraft company illustrates these points, where
the software quality assurance (SQA) procedures
were incommensurable with the use of automati-
cally generated code.

IntroductIon

They have computers, and they may have other
weapons of mass destruction. Janet Reno, former
US Attorney General

In this article our aim is to develop a theo-
retical framework with which to analyse a case
study where one of the authors was involved,
acting as an action researcher in the quality as-

 2761

Trusting Computers Through Trusting Humans

surance procedures of a safety-critical system.
This involved the production of software for
aeroplane flight systems. An interesting tension
arose between the automatically generated code
of the software system (i.e., ‘auto-code’—pro-
duced automatically by a computer, using CASE
[Computer Aided Software Engineering] tools
from a high level design) and the requirement
of the quality assurance process which had built
into it the requirement for human understanding
and trust of the code produced.

The developers of the system in the case
study designed it around auto-code—computer
generated software, free from ‘human’ error,
although not proved correct in the mathematical
sense, and cheaper and quicker to produce than
traditional program code. They looked to means of
verifying the correctness of their system through
standard software quality assurance (SQA) pro-
cedures. However, ultimately, they were unable
to bring themselves to reconcile their verification
procedures with automatically generated code.
Some of the reason for this was that trust in
human verification was built into (or inscribed
into [Akrich, 1992]) the standards and quality
assurance procedures which they were obliged
to follow in building the system. Despite their
formally couched descriptions, the standards and
verification procedures were completely reliant on
human verification at every step. However these
‘human trust’ procedures were incompatible with
the automated production of software in ways we
show below. The end result was not failure in the
traditional sense but a failure to resolve incom-
mensurable procedures; one set relying on human
trust, one set on computer trust.

Our research question is therefore: How may
we understand what happens when software de-
signers are asked to trust the design of a system,
based on automatically generated program code,
when the SQA procedures and military standards
to which they must adhere demand walkthroughs
and code inspections which are impossible to
achieve with auto-code?

The theoretical framework we use to form
our analysis of the case study is drawn from
the links we make between the social nature of
mathematical proof, the need to achieve trust in
system verification, the ways in which we achieve
trust in the online world, the methods of software
engineering, and within that, the software qual-
ity movement and the related highly influential
domain of military standards.

In the following section we briefly outline the
social nature of mathematical proof. The next sec-
tion discusses the debate over system verification
which encapsulates many of the ideas of math-
ematical proof and how such proofs can be trusted
by other mathematicians. The article proceeds to
consider ‘computer mediated’ trust, briefly detail-
ing how trust has been reified and represented in
computer systems to date, mainly in relation to the
commercial interests of e-commerce and informa-
tion security. Trust is particularly pertinent in the
world of safety-critical systems, where failure is
not just inconvenient and financially damaging,
although commercial pressures are still evident
here, but where lives can be lost. The model of trust
criticised by e-commerce critics is more similar to
the type of trust we describe in relation to safety-
critical systems, than one might, at first, expect.
Understandably, we would like to put faith in a
system which has been mathematically proved to
be correct. However computer generated proofs,
proofs about correctness of computer software,
and automatically generated code are not neces-
sarily understandable or amenable to inspection
by people, even by experts. The question then
arises of whether we can bring ourselves to trust
computer generated proofs or code, when even
a competent mathematician, logician,or expert
programmer cannot readily understand them.

Following this, we describe the evolution of
software development standards and the SQA
movement. We argue that the development of
quality assurance discourse involves processes of
designing human ways of trusting mathematical
evidence into standardisation and SQA. Military

13 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/trusting-computers-through-trusting-

humans/29533

Related Content

Development of Automated Systems using Proved B Patterns
Olfa Mosbahi, Mohamed Khalguiand Zhiwu Li (2013). Embedded Computing Systems: Applications,

Optimization, and Advanced Design (pp. 125-139).

www.irma-international.org/chapter/development-automated-systems-using-proved/76954

Software Maintainability Estimation in Agile Software Development
Parita Jain, Arun Sharmaand Laxmi Ahuja (2022). Research Anthology on Agile Software, Software

Development, and Testing (pp. 1002-1017).

www.irma-international.org/chapter/software-maintainability-estimation-in-agile-software-development/294506

Dynamic Butterfly ACM for Risk Optimization on the Real-Time Unix Operating System
Abhishek Asthanaand Padma Lochan Pradhan (2022). International Journal of Software Innovation (pp. 1-

16).

www.irma-international.org/article/dynamic-butterfly-acm-for-risk-optimization-on-the-real-time-unix-operating-

system/297505

Performance-Aware Approach for Software Risk Management Using Random Forest Algorithm
Alankrita Aggarwal, Kanwalvir Singh Dhindsaand P. K. Suri (2021). International Journal of Software

Innovation (pp. 12-19).

www.irma-international.org/article/performance-aware-approach-for-software-risk-management-using-random-forest-

algorithm/266279

Software Security Engineering: Design and Applications
Khaled M. Khan (2012). International Journal of Secure Software Engineering (pp. 62-63).

www.irma-international.org/article/software-security-engineering/64195

http://www.igi-global.com/chapter/trusting-computers-through-trusting-humans/29533
http://www.igi-global.com/chapter/trusting-computers-through-trusting-humans/29533
http://www.irma-international.org/chapter/development-automated-systems-using-proved/76954
http://www.irma-international.org/chapter/software-maintainability-estimation-in-agile-software-development/294506
http://www.irma-international.org/article/dynamic-butterfly-acm-for-risk-optimization-on-the-real-time-unix-operating-system/297505
http://www.irma-international.org/article/dynamic-butterfly-acm-for-risk-optimization-on-the-real-time-unix-operating-system/297505
http://www.irma-international.org/article/performance-aware-approach-for-software-risk-management-using-random-forest-algorithm/266279
http://www.irma-international.org/article/performance-aware-approach-for-software-risk-management-using-random-forest-algorithm/266279
http://www.irma-international.org/article/software-security-engineering/64195

