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Abstract

In machine learning the problem of limited data 
for supervised learning is a challenging problem 
with practical applications. We address a similar 
problem in the context of software quality mod-
eling. Knowledge-based software engineering 
includes the use of quantitative software quality 
estimation models. Such models are trained using 
apriori software quality knowledge in the form 
of software metrics and defect data of previously 
developed software projects. However, various 
practical issues limit the availability of defect data 
for all modules in the training data. We present 
two solutions to the problem of software quality 
modeling when a limited number of training mod-
ules have known defect data. The proposed solu-
tions are a semisupervised clustering with expert 
input scheme and a semisupervised classification 
approach with the expectation-maximization al-
gorithm. Software measurement datasets obtained 

from multiple NASA software projects are used 
in our empirical investigation. The software qual-
ity knowledge learnt during the semisupervised 
learning processes provided good generalization 
performances for multiple test datasets. In addi-
tion, both solutions provided better predictions 
compared to a supervised learner trained on the 
initial labeled dataset.

Introduction

Data mining and machine learning have numerous 
practical applications across several domains, es-
pecially for classification and prediction problems. 
This chapter involves a data mining and machine 
learning problem in the context of software qual-
ity modeling and estimation. Software measure-
ments and software fault (defect) data have been 
used in the development of models that predict 
software quality, for example, a software quality 
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classification model (Imam, Benlarbi, Goel, & 
Rai, 2001; Khoshgoftaar & Seliya, 2004; Ohlsson 
& Runeson, 2002) predicts the fault-proneness 
membership of program modules. A software 
quality model allows the software development 
team to track and detect potential software defects 
relatively early-on during development.

Software quality estimation models exploit the 
software engineering hypothesis that software 
measurements encapsulate the underlying quality 
of the software system. This assumption has been 
verified in numerous studies (Fenton & Pfleeger, 
1997). A software quality model is typically built 
or trained using software measurement and defect 
data from a similar project or system release previ-
ously developed. The model is then applied to the 
currently under-development system to estimate 
the quality or presence of defects in its program 
modules. Subsequently, the limited resources 
allocated for software quality inspection and 
improvement can be targeted toward low-qual-
ity modules, achieving cost-effective resource 
utilization (Khoshgoftaar & Seliya, 2003).

An important assumption made during typi-
cal software quality classification modeling is 
that fault-proneness labels are available for all 
program modules (instances) of training data, that 
is, supervised learning is facilitated because all 
instances in the training data have been assigned a 
quality-based label such as fault-prone ( fp) or not 
fault-prone (nfp). In software engineering practice, 
however, there are various practical scenarios 
that can limit availability of quality-based labels 
or defect data for all the modules in the training 
data, for example:  

•	 The cost of running data collection tools 
may limit for which subsystems software 
quality data is collected.

•	 Only some project components in a dis-
tributed software system may collect soft-
ware quality data, while others may not be 
equipped for collecting similar data.

•	 The software defect data collected for some 
program modules may be error-prone due 
to data collection and recording problems.

•	 In a multiple release software project, a given 
release may collect software quality data for 
only a portion of the modules, either due to 
limited funds or other practical issues.

In the training software measurement dataset 
the fault-proneness labels may only be known for 
some of the modules, that is, labeled instances, 
while for the remaining modules, that is, unlabeled 
instances, only software attributes are available. 
Under such a situation following the typical su-
pervised learning approach to software quality 
modeling may be inappropriate. This is because 
a model trained using the small portion of labeled 
modules may not yield good software quality 
analysis, that is, the few labeled modules are not 
sufficient to adequately represent quality trends 
of the given system. Toward this problem, perhaps 
the solution lies in extracting the knowledge (in 
addition to the labeled instances) stored in the 
software metrics of the unlabeled modules.

The above described problem represents the 
labeled-unlabeled learning problem in data mining 
and machine learning (Seeger, 2001). We present 
two solutions to the problem of software quality 
modeling with limited prior fault-proneness de-
fect data. The first solution is a semisupervised 
clustering with expert input scheme based on 
the k-means algorithm (Seliya, Khoshgoftaar, 
& Zhong, 2005), while the other solution is a 
semisupervised classification approach based on 
the expectation maximization (EM) algorithm 
(Seliya, Khoshgoftaar, & Zhong, 2004).

The semisupervised clustering with expert 
input approach is based on implementing con-
straint-based clustering, in which the constraint 
maintains a strict membership of modules to 
clusters that are already labeled as nfp or fp. At the 
end of a constraint-based clustering run a domain 
expert is allowed to label the unlabeled clusters, 
and the semisupervised clustering process is iter-
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