
2714

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.5
Software Quality Modeling with

Limited Apriori Defect Data
Naeem Seliya

University of Michigan, USA

Taghi M. Khoshgoftaar
Florida Atlantic University, USA

Abstract

In machine learning the problem of limited data
for supervised learning is a challenging problem
with practical applications. We address a similar
problem in the context of software quality mod-
eling. Knowledge-based software engineering
includes the use of quantitative software quality
estimation models. Such models are trained using
apriori software quality knowledge in the form
of software metrics and defect data of previously
developed software projects. However, various
practical issues limit the availability of defect data
for all modules in the training data. We present
two solutions to the problem of software quality
modeling when a limited number of training mod-
ules have known defect data. The proposed solu-
tions are a semisupervised clustering with expert
input scheme and a semisupervised classification
approach with the expectation-maximization al-
gorithm. Software measurement datasets obtained

from multiple NASA software projects are used
in our empirical investigation. The software qual-
ity knowledge learnt during the semisupervised
learning processes provided good generalization
performances for multiple test datasets. In addi-
tion, both solutions provided better predictions
compared to a supervised learner trained on the
initial labeled dataset.

Introduction

Data mining and machine learning have numerous
practical applications across several domains, es-
pecially for classification and prediction problems.
This chapter involves a data mining and machine
learning problem in the context of software qual-
ity modeling and estimation. Software measure-
ments and software fault (defect) data have been
used in the development of models that predict
software quality, for example, a software quality

 2715

Software Quality Modeling with Limited Apriori Defect Data

classification model (Imam, Benlarbi, Goel, &
Rai, 2001; Khoshgoftaar & Seliya, 2004; Ohlsson
& Runeson, 2002) predicts the fault-proneness
membership of program modules. A software
quality model allows the software development
team to track and detect potential software defects
relatively early-on during development.

Software quality estimation models exploit the
software engineering hypothesis that software
measurements encapsulate the underlying quality
of the software system. This assumption has been
verified in numerous studies (Fenton & Pfleeger,
1997). A software quality model is typically built
or trained using software measurement and defect
data from a similar project or system release previ-
ously developed. The model is then applied to the
currently under-development system to estimate
the quality or presence of defects in its program
modules. Subsequently, the limited resources
allocated for software quality inspection and
improvement can be targeted toward low-qual-
ity modules, achieving cost-effective resource
utilization (Khoshgoftaar & Seliya, 2003).

An important assumption made during typi-
cal software quality classification modeling is
that fault-proneness labels are available for all
program modules (instances) of training data, that
is, supervised learning is facilitated because all
instances in the training data have been assigned a
quality-based label such as fault-prone (fp) or not
fault-prone (nfp). In software engineering practice,
however, there are various practical scenarios
that can limit availability of quality-based labels
or defect data for all the modules in the training
data, for example:

•	 The cost of running data collection tools
may limit for which subsystems software
quality data is collected.

•	 Only some project components in a dis-
tributed software system may collect soft-
ware quality data, while others may not be
equipped for collecting similar data.

•	 The software defect data collected for some
program modules may be error-prone due
to data collection and recording problems.

•	 In a multiple release software project, a given
release may collect software quality data for
only a portion of the modules, either due to
limited funds or other practical issues.

In the training software measurement dataset
the fault-proneness labels may only be known for
some of the modules, that is, labeled instances,
while for the remaining modules, that is, unlabeled
instances, only software attributes are available.
Under such a situation following the typical su-
pervised learning approach to software quality
modeling may be inappropriate. This is because
a model trained using the small portion of labeled
modules may not yield good software quality
analysis, that is, the few labeled modules are not
sufficient to adequately represent quality trends
of the given system. Toward this problem, perhaps
the solution lies in extracting the knowledge (in
addition to the labeled instances) stored in the
software metrics of the unlabeled modules.

The above described problem represents the
labeled-unlabeled learning problem in data mining
and machine learning (Seeger, 2001). We present
two solutions to the problem of software quality
modeling with limited prior fault-proneness de-
fect data. The first solution is a semisupervised
clustering with expert input scheme based on
the k-means algorithm (Seliya, Khoshgoftaar,
& Zhong, 2005), while the other solution is a
semisupervised classification approach based on
the expectation maximization (EM) algorithm
(Seliya, Khoshgoftaar, & Zhong, 2004).

The semisupervised clustering with expert
input approach is based on implementing con-
straint-based clustering, in which the constraint
maintains a strict membership of modules to
clusters that are already labeled as nfp or fp. At the
end of a constraint-based clustering run a domain
expert is allowed to label the unlabeled clusters,
and the semisupervised clustering process is iter-

12 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-quality-modeling-limited-apriori/29530

Related Content

Fuzzy Mutual Information Feature Selection Based on Representative Samples
Omar A. M. Salemand Liwei Wang (2018). International Journal of Software Innovation (pp. 58-72).

www.irma-international.org/article/fuzzy-mutual-information-feature-selection-based-on-representative-samples/191209

A Method to Design a Software Process Architecture in a Multimodel Environment: An Overview
Mery Pesantes, Jorge Luis Risco Becerraand Cuauhtémoc Lemus (2014). Agile Estimation Techniques

and Innovative Approaches to Software Process Improvement (pp. 219-242).

www.irma-international.org/chapter/a-method-to-design-a-software-process-architecture-in-a-multimodel-

environment/100280

Determination of Melting Point of Chemical Substances Using Image Differencing Method
Anurag Shrivastavaand Rama Sushil (2022). International Journal of Software Innovation (pp. 1-10).

www.irma-international.org/article/determination-of-melting-point-of-chemical-substances-using-image-differencing-

method/297985

Use of Framework Synthesis to Identify the Factors Considered for Five Popular Prioritisation

Approaches
Zoe Hoy (2022). Emerging Technologies for Innovation Management in the Software Industry (pp. 157-

167).

www.irma-international.org/chapter/use-of-framework-synthesis-to-identify-the-factors-considered-for-five-popular-

prioritisation-approaches/304543

A Formal Language for Modelling and Verifying Systems-of-Systems Software Architectures
Akram Seghiri, Faiza Belalaand Nabil Hameurlain (2022). International Journal of Systems and Service-

Oriented Engineering (pp. 1-17).

www.irma-international.org/article/a-formal-language-for-modelling-and-verifying-systems-of-systems-software-

architectures/297137

http://www.igi-global.com/chapter/software-quality-modeling-limited-apriori/29530
http://www.irma-international.org/article/fuzzy-mutual-information-feature-selection-based-on-representative-samples/191209
http://www.irma-international.org/chapter/a-method-to-design-a-software-process-architecture-in-a-multimodel-environment/100280
http://www.irma-international.org/chapter/a-method-to-design-a-software-process-architecture-in-a-multimodel-environment/100280
http://www.irma-international.org/article/determination-of-melting-point-of-chemical-substances-using-image-differencing-method/297985
http://www.irma-international.org/article/determination-of-melting-point-of-chemical-substances-using-image-differencing-method/297985
http://www.irma-international.org/chapter/use-of-framework-synthesis-to-identify-the-factors-considered-for-five-popular-prioritisation-approaches/304543
http://www.irma-international.org/chapter/use-of-framework-synthesis-to-identify-the-factors-considered-for-five-popular-prioritisation-approaches/304543
http://www.irma-international.org/article/a-formal-language-for-modelling-and-verifying-systems-of-systems-software-architectures/297137
http://www.irma-international.org/article/a-formal-language-for-modelling-and-verifying-systems-of-systems-software-architectures/297137

