
2700

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.4
Teaching Agile Software

Development Quality Assurance
Orit Hazzan

Technion–Israel Institute of Technology, Israel

Yael Dubinsky
IBM Haifa Research Lab, Israel

Technion–Israel Institute of Technology, Israel

Abstract

This chapter presents a teaching framework for
agile quality—that is, the way quality issues
are perceived in agile software development
environments. The teaching framework consists
of nine principles, the actual implementation
of which is varied and should be adjusted for
different specific teaching environments. This
chapter outlines the principles and addresses
their contribution to learners’ understanding of
agile quality. In addition, we highlight some of
the differences between agile software develop-
ment and plan-driven software development in
general, and with respect to software quality in
particular. This chapter provides a framework
to be used by software engineering instructors
who wish to base students learning on students’
experiences of the different aspects involved in
software development environments.

Introduction

Quality assurance (QA) is an integral and essential
ingredient of any engineering process. Though
there is a consensus among software practitioners
about its importance, in traditional software de-
velopment environments conflicts may still arise
between software QA people and developers (Van
Vliet, 2000, p. 125).

Agile software development methods emerged
during the past decade as a response to the char-
acteristics problems of software development
processes. Since the agile methods introduced a
different perspective on QA, we will call the agile
approach toward quality issues agile quality—AQ,
and will focus, in this chapter, on the teaching of
AQ. By the term AQ, we refer to all the activities
(e.g., testing, refactoring, requirement gathering)
that deal with quality as they are manifested and
applied in agile software development environ-
ments. It is important to emphasize that the term

 2701

Teaching Agile Software Development Quality Assurance

AQ does not imply that quality changes. To the
contrary, the term AQ reflects the high standards
that agile software methods set with respect to
software quality.

Based on our extensive experience of teach-
ing agile software development methods both
in academia and in the software industry1, we
present a teaching framework for AQ. The teach-
ing framework consists of nine principles, the
actual implementation of which is varied and
should be adjusted for different specific teach-
ing environments (e.g., academia and industry to
different sizes of groups). This chapter outlines
the principles and addresses their contribution to
learners’ understanding of AQ.

In the next section, we highlight some of the
differences between agile software development
and plan-driven2 software development in general,
and with respect to software quality in particu-
lar. Then, we focus on the teaching of AQ. We
start by explaining why quality should be taught
and, based on this understanding, we present
the teaching framework for AQ, which suggests
an alternative approach for the teaching of AQ.
Finally, we conclude.

Agile vs. Plan-Driven Software
Development

In this section, we highlight some of the main
differences between agile software development
and traditional, plan-driven software develop-
ment. Before we elaborate on these differences,
we present our perspective within which we wish
to analyze these differences.

Traditional software development processes
mimic traditional industries by employing some
kind of production chain. However, the failure
of software projects teaches us that such models
do not always work well for software develop-
ment processes. In order to cope with problems
that result from such practices, the notion of a
production chain is eliminated in agile software
development environments and is replaced by

a more network-oriented development process
(Beck, 2000). In practice, this means that in agile
teams, the task at hand is not divided and allo-
cated to several different teams according to their
functional description (for example, designers,
developers, and testers), each of which executes
its part of the task. Rather, all software develop-
ment activities are intertwined and there is no
passing on of responsibility to the next stage in
the production chain. Thus, all team members are
equally responsible for the software quality. We
suggest that this different concept of the develop-
ment process results, among other factors, from
the fact that software is an intangible product,
and therefore it requires a different development
process, as well as a different approach toward
the concept of software quality, than do tangible
products.

Agile Development Methods vs.
Plan-Driven Development Methods

During the 1990s, the agile approach toward soft-
ware development started emerging in response
to the typical problems of the software industry.
The approach is composed of several methods and
it formalizes software development frameworks
that aim to systematically overcome characteristic
problems of software projects (Highsmith, 2002).
Generally speaking, the agile approach reflects the
notion that software development environments
should support communication and information
sharing, in addition to heavy testing, short releases,
customer satisfaction, and sustainable work-pace
for all individuals involved in the process. Table 1
presents the manifesto for agile software develop-
ment (http://agilemanifesto.org/).

Several differences exist between agile
software development methods and plan-driven
methods. Table 2 summarizes some of these dif-
ferences.

12 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/teaching-agile-software-development-

quality/29529

Related Content

IDS Using Reinforcement Learning Automata for Preserving Security in Cloud Environment
Partha Ghosh, Meghna Bardhan, Nilabhra Roy Chowdhuryand Santanu Phadikar (2017). International

Journal of Information System Modeling and Design (pp. 21-37).

www.irma-international.org/article/ids-using-reinforcement-learning-automata-for-preserving-security-in-cloud-

environment/205594

Test Suite Optimization Using Firefly and Genetic Algorithm
Abhishek Pandeyand Soumya Banerjee (2022). Research Anthology on Agile Software, Software

Development, and Testing (pp. 1635-1651).

www.irma-international.org/chapter/test-suite-optimization-using-firefly-and-genetic-algorithm/294534

Integrating Access Control into UML for Secure Software Modeling and Analysis
Thuong Doan, Steven Demurjian, Laurent Micheland Solomon Berhe (2010). International Journal of

Secure Software Engineering (pp. 1-19).

www.irma-international.org/article/integrating-access-control-into-uml/39006

An Incremental B-Model for RBAC-Controlled Electronic Marking System
Nasser Al-hadhrami, Benjamin Azizand Lotfi ben Othmane (2016). International Journal of Secure Software

Engineering (pp. 37-64).

www.irma-international.org/article/an-incremental-b-model-for-rbac-controlled-electronic-marking-system/152246

Understanding the Role of Use Cases in UML: A Review and Research Agenda
Brian Dobingand Jeffrey Parsons (2002). Successful Software Reengineering (pp. 111-128).

www.irma-international.org/chapter/understanding-role-use-cases-uml/29972

http://www.igi-global.com/chapter/teaching-agile-software-development-quality/29529
http://www.igi-global.com/chapter/teaching-agile-software-development-quality/29529
http://www.irma-international.org/article/ids-using-reinforcement-learning-automata-for-preserving-security-in-cloud-environment/205594
http://www.irma-international.org/article/ids-using-reinforcement-learning-automata-for-preserving-security-in-cloud-environment/205594
http://www.irma-international.org/chapter/test-suite-optimization-using-firefly-and-genetic-algorithm/294534
http://www.irma-international.org/article/integrating-access-control-into-uml/39006
http://www.irma-international.org/article/an-incremental-b-model-for-rbac-controlled-electronic-marking-system/152246
http://www.irma-international.org/chapter/understanding-role-use-cases-uml/29972

