
2680

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.3
Agile Software Development

Quality Assurance:
Agile Project Management,

Quality Metrics, and
Methodologies

James F. Kile
IBM Corporation, USA

Maheshwar R. Inampudi
IBM Corporation, USA

AbstrAct

Of great interest to software development profes-
sionals is whether the adaptive methods found in
agile methodologies can be successfully imple-
mented in a highly disciplined environment and
still provide the benefits accorded to fully agile
projects. As a general rule, agile software develop-
ment methodologies have typically been applied to
non-critical projects using relatively small project
teams where there are vague requirements, a high
degree of anticipated change, and no significant
availability or performance requirements (Boehm
& Turner, 2004). Using agile methods in their pure
form for projects requiring either high availability,
high performance, or both is considered too risky

by many practitioners (Boehm et al., 2004; Paulk,
2001). When one investigates the various agile
practices, however, one gets the impression that
each may still have value when separated from
the whole. This chapter discusses how one team
was able to successfully drive software develop-
ment quality improvements and reduce overall
cycle time through the introduction of several
individual agile development techniques. Through
the use of a common-sense approach to software
development, it is shown that the incorporation of
individual agile techniques does not have to entail
additional risk for projects having higher avail-
ability, performance, and quality requirements.

 2681

Agile Software Development Quality Assurance

IntroductIon

Traditional software development approaches,
perhaps best represented by the capability ma-
turity model for software (SW-CMM) (Paulk,
Curtis, Chrissis, & Weber, 1993) and its successor
the capability maturity model for software inte-
gration (CMMI®) (Chrissis, Konrad, & Shrum,
2003), focus on a disciplined approach to software
development that is still widely used by organiza-
tions as a foundation for project success. While
the strength of traditional development methods
is their ability to instill process repeatability and
standardization, they also require a significant
amount of organizational investment to ensure
their success. Organizations that have done well
using traditional approaches can also fall victim
of their success through a strict expectation that
history can always be repeated (Zhiying, 2003)
when the environment becomes uncertain.

Agile development practices have frequently
been presented as revolutionary. There is some
evidence, however, that they can offer an alter-
native common-sense approach when applied to
traditional software engineering practices (Paulk,
2001). Perhaps they can be used in part to improve
the development processes of projects that do not
fit the usual agile model (e.g., critical systems
with high availability requirements)? Indeed, it
has been suggested that project risk should be the
driving factor when choosing between agile and
plan-driven methods (Boehm et al., 2004) rather
than overall project size or criticality. This implies
that certain components of any project may be
well suited to agility while others may not.

This chapter discusses how agile methods were
used on one team to successfully drive software
development quality improvements and reduce
overall cycle time. This is used as a framework for
discussing the impact of agile software develop-
ment on people, processes, and tools. Though the
model project team presented is relatively small
(eight people), it has some decidedly non-agile

characteristics: It is geographically distributed,
it has no co-located developers, the resulting
product has high performance and reliability re-
quirements, and the organization’s development
methodology is decidedly waterfall having gained
CMM® Level 5 compliance. Therefore, some of the
fundamental paradigms that serve as the basis for
successful agile development—extreme program-
ming (Beck & Andres, 2005), for example—do
not exist. Nevertheless, they were successfully
able to implement several agile practices while
maintaining high quality deliverables and reduc-
ing cycle time.

chapter organization

This chapter is organized as follows:

1. Background: Some history is given about
our model project team and what led them
to investigate agile methods. The concept
of using a hybrid plan- and agile-driven
method is also introduced.

2. Approaching Selection: How did our model
project team decide which agile practices to
use and which ones to discard? This section
discusses the risk-based project management
and technical approach used.

3. Implementation: This section presents how
each selected agile practice was incorporated
into the software development process.

4. Impact: How did the project team know the
implemented agile practices were providing
some benefit? This section talks generically
about some of the metrics that were used
to compare the project to prior projects
performed by the same team and the impact
the selected methods had on the project.

5. Future Trends: A brief discussion about
what path will be taken to approach follow-
on projects.

6. Conclusion.

18 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/agile-software-development-quality-

assurance/29528

Related Content

Specification and Validation of Real Time Systems
Olfa Mosbahi (2011). Reconfigurable Embedded Control Systems: Applications for Flexibility and Agility

(pp. 444-475).

www.irma-international.org/chapter/specification-validation-real-time-systems/50439

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User

Interfaces
Kenia Sousa, Albert Schillingand Elizabeth Furtado (2007). Verification, Validation and Testing in Software

Engineering (pp. 55-81).

www.irma-international.org/chapter/integrating-usability-semiotic-software-engineering/30747

Expert Group Knowledge Triggers: When Knowledge Surfaces
Hanna Dreyer, Gerald Robin Bownand Martin George Wynn (2022). Research Anthology on Agile

Software, Software Development, and Testing (pp. 565-583).

www.irma-international.org/chapter/expert-group-knowledge-triggers/294483

A Survey and Taxonomy of Intent-Based Code Search
Shailesh Kumar Shivakumar (2021). International Journal of Software Innovation (pp. 69-110).

www.irma-international.org/article/a-survey-and-taxonomy-of-intent-based-code-search/266283

Analog Learning Neural Network using Two-Stage Mode by Multiple and Sample Hold Circuits
Masashi Kawaguchi, Naohiro Ishiiand Takashi Jimbo (2014). International Journal of Software Innovation

(pp. 61-72).

www.irma-international.org/article/analog-learning-neural-network-using-two-stage-mode-by-multiple-and-sample-hold-

circuits/111450

http://www.igi-global.com/chapter/agile-software-development-quality-assurance/29528
http://www.igi-global.com/chapter/agile-software-development-quality-assurance/29528
http://www.irma-international.org/chapter/specification-validation-real-time-systems/50439
http://www.irma-international.org/chapter/integrating-usability-semiotic-software-engineering/30747
http://www.irma-international.org/chapter/expert-group-knowledge-triggers/294483
http://www.irma-international.org/article/a-survey-and-taxonomy-of-intent-based-code-search/266283
http://www.irma-international.org/article/analog-learning-neural-network-using-two-stage-mode-by-multiple-and-sample-hold-circuits/111450
http://www.irma-international.org/article/analog-learning-neural-network-using-two-stage-mode-by-multiple-and-sample-hold-circuits/111450

