
 2599

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.16
Revenue Models in the Open

Source Software Business
Risto Rajala

Helsinki School of Economics, Finland

Jussi Nissilä
University of Turku, Finland

Mika Westerlund
Helsinki School of Economics, Finland

ABSTRACT

Profit-oriented business behavior has increased
within the open source software movement.
However, it has proved to be a challenging and
complex issue due to the fact that open source
software (OSS) business models are based on
software that typically is freely distributed or
accessed by any interested party, usually free
of charge. It should be noted, however, that like
all traditional software businesses, the business
models based on OSS ultimately aim at generating
profits. The aim of this chapter is to explore the
key considerations in designing profitable revenue
models for businesses based on OSS. We approach
the issue through two business cases: Red Hat and
MySQL, both of which illustrate the complexity
and heterogeneity of solutions and options in

the field of OSS. We focus on the managerial
implications derived from the cases, discussing
how different business model elements should be
managed when doing business with OSS.

Introduction

Whereas the business models of the traditional
providers of proprietary software are grounded in
one way or another on the distribution of access to
the use of software-related intellectual property
(IP) protected by copyrights, business models
within the open source movement have to rely
on other types of revenue models. This is due to
the fact that open source software (OSS) business
models are based on software that typically is
freely distributed or accessed by any interested

2600

Revenue Models in the Open Source Software Business

party, usually free of charge. OSS is often mistaken
for shareware or freeware, but there are significant
differences between the licensing models and
the processes between and within these types of
software. It should be noted, however, that like
all traditional software businesses, the business
models based on OSS ultimately aim at generating
profits. However, profitability and business models
of OSS are still poorly understood phenomena, and
there is no single framework that would explain
the potential determinants of firm-level revenue
model choices.

In this chapter, we make an attempt to iden-
tify key considerations in designing successful
revenue models in the OSS business. We explore
the revenue models of two selected OSS business
cases. Through these cases, we aim at identifying
the firm-specific business model elements that
guide, enable and constrain the choice of revenue
model options in OSS business. As a limitation
to the analysis presented in this chapter, we leave
the exogenous factors (such as competition and
other environmental factors) beyond the scope of
our consideration.

Background

In this chapter, we discuss the background of the
OSS business, typical licence OSS choices, and
the potential for conducting for-profit business
with OSS.

Development of OSS Business

The history of the open source movement goes
back to the early ages of computing. In the 1960s
and 1970s, it was common for programmers in
certain academic institutions (e.g., Berkeley,
MIT) and corporate research centers (e.g., Bell
Labs, Xerox’s Palo Alto Research Center) to
share computer program source codes with other
programmers. It was not until the early 1980s
that proprietary software became very popular,

thus causing problems with cooperative software
development (Lerner & Tirole, 2002). The pre-
decessor of the open source movement, the Free
Software Foundation (FSF), was founded in 1983
by MIT employee Richard Stallman in his attempt
to formalize cooperative software development
and create a complete free1 operating system
with necessary software development tools. This
project was called the GNU Project. Stallman’s
general concept of free software possesses four
essential freedoms (Stallman, 1999):

•	 Freedom to run the program
•	 Freedom to modify the program
•	 Freedom to redistribute the program
•	 Freedom to distribute modified versions of

the program

Stallman didn’t want to release software with
restrictive copyright terms because it would
prevent certain forms of valuable cooperation.
On the other hand, releasing software to the
public domain would leave it vulnerable to be
copyrighted and included in proprietary pack-
ages. Thus, Stallman came up with the idea of
copyleft, or protecting the freedom of software
with the means of copyright laws. In addition,
copyleft ensures that the modified works are also
released under copyleft terms and, therefore, to the
use of the community. Stallman, (2002) argues,
“Proprietary software developers use copyright to
take away the users’ freedom; we use copyright to
guarantee their freedom. That’s why we reverse
the name, changing ‘copyright’ into ‘copyleft.’” To
implement this idea, the FSF developed the GNU
General Public License (GNU GPL), the first of
the now extensive selection of copyleft licenses
that are used to protect free/OSS. Meanwhile, the
open anticommercialism of FSF led to a group of
free software movement leaders deciding to find
new ways to strengthen their cause, but with less
radical means. They came up with the term “open
source,” which they thought would better describe
the software ideals, and founded the Open Source

13 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/revenue-models-open-source-software/29524

Related Content

Multirate Techniques in Filter Design and Implementation
Ljiljana Milic (2009). Multirate Filtering for Digital Signal Processing: MATLAB Applications (pp. 274-294).

www.irma-international.org/chapter/multirate-techniques-filter-design-implementation/27218

Design and Evaluation of Automated Scoring: Java Programming Assignments
Yuki Akahane, Hiroki Kitayaand Ushio Inoue (2015). International Journal of Software Innovation (pp. 18-

32).

www.irma-international.org/article/design-and-evaluation-of-automated-scoring/133112

Heuristics and Metrics for OO Refactoring: A Consolidation and Appraisal of Current Issues
Steve Counsell, Youssef Hassounand Deepak Advani (2009). Software Applications: Concepts,

Methodologies, Tools, and Applications (pp. 3430-3454).

www.irma-international.org/chapter/heuristics-metrics-refactoring/29570

Adaptive Threshold Based Clustering: A Deterministic Partitioning Approach
Mamta Mittal, Rajendra Kumar Sharma, Varinder Pal Singhand Raghvendra Kumar (2019). International

Journal of Information System Modeling and Design (pp. 42-59).

www.irma-international.org/article/adaptive-threshold-based-clustering/226235

Tailoring Software Development Processes Along TQM Concepts: A Way to Narrow User-

Perceived Expectations Gap for Information Systems
Geroge E.M. Ditsa (2001). Strategies for Managing Computer Software Upgrades (pp. 136-146).

www.irma-international.org/chapter/tailoring-software-development-processes-along/29917

http://www.igi-global.com/chapter/revenue-models-open-source-software/29524
http://www.irma-international.org/chapter/multirate-techniques-filter-design-implementation/27218
http://www.irma-international.org/article/design-and-evaluation-of-automated-scoring/133112
http://www.irma-international.org/chapter/heuristics-metrics-refactoring/29570
http://www.irma-international.org/article/adaptive-threshold-based-clustering/226235
http://www.irma-international.org/chapter/tailoring-software-development-processes-along/29917

