
1222

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 61

DOI: 10.4018/978-1-6684-3702-5.ch061

ABSTRACT

State-based testing (SBT) is known as deriving test cases from state machines and examining the dynamic
behaviour of the system. It helps to identify various types of state-based faults within a system under
test (SUT). For SBT, test cases are generated from state chart diagrams based on various coverage cri-
teria such as All Transition, Round Trip Path, All Transition Pair, All Transition Pair with length 2, All
Transition Pair with length 3, All Transition Pair of length 4 and Full Predicate. This article discuses
a number of coverage criteria at the design level to find out various types of state-based faults in SBT.
First, the intermediate graph is generated from a state chart diagram using an XML parser. The graph
is traversed based on the given coverage criteria to generate a sequence of test cases. Then, mutation
testing and sneak-path testing are applied on the generated test cases to check the effectiveness of the
generated test suite. These two are common methods for checking the effectiveness of test cases. Mutation
testing helps in the number of seeded errors covered whereas sneak-path testing basically helps to ex-
amine the unspecified behavior of the system. In round trip path (RTP), it is not possible to cover all
paths. All transition is not an adequate level of fault detection with more execution time compared to
all transition pair (ATP) with length 4 (LN4). In the discussion, ATP with LN4 is the best among all
coverage criteria. SBT can able to detect various state-based faults-incorrect transition, missing transi-

Coverage Criteria for
State-Based Testing:

A Systematic Review

Sonali Pradhan
Siksha ‘O’ Anusandhan University, Bhubaneswar, India

Mitrabinda Ray
Department of Computer Science and Engineering, Siksha ‘O’ Anusandhan University, Bhubaneswar,

India

Srikanta Patnaik
 https://orcid.org/0000-0001-8297-0614

Siksha ‘O’ Anusandhan University, Bhubaneswar, India

1223

Coverage Criteria for State-Based Testing
﻿

INTRODUCTION

Testing at the early phase of software development life cycle can able to find the ambiguities and incon-
sistencies in the design and hence, design should be enhanced before the program is written (Antonio
et al., 2002; Sundararajan et al., 2017). Research is going on state-based testing (SBT) to find effective
test cases and to minimize cost of the test suite (Agrawal et al., 1989; Holt et al., 2014). For this, Uni-
fied Modeling Language (UML) diagrams are used to generate test cases. Initially testers were going
for traditional testing, which is also known as code coverage testing. But, state-based coverage cannot
be achieved in code-based testing (Binder, 2000). To achieve this, tester generates test scenarios from
the state chart diagrams and then test cases are generated from these scenarios. Test cases are generated
at design level and coverage analysis is performed from the source code. The diagrams are generated at
the design stage of development life cycle. Generating test cases based on UML diagrams come under
Model Based Testing (MBT). It is a better testing approach than code-based testing as it detects the error
at the early phase which requires less cost to fix it (Chen & Wang, 2014; Dias Neto et al., 2007). MBT
are conducted for the following reasons:

•	 To get an abstract model of the system;
•	 Validate the model;
•	 Generate and execute test cases;
•	 Assigning pass/fail verdict;
•	 Analyzing the execution result;
•	 When it is not required to model the full system;
•	 To prevent fault;
•	 To reduce cost with updating test cases.

Early testing activities make early fault detection (Binder, 2000; Broy et al., 2005) and more and more
articles are referred to as MBT using state-based testing. In a very recent article, we find in MBT, where
it elaborates several findings from MBT users in industry, security testing and various MBT challenges
(Utting et al., 2016). Utting and Legeard (Briand & Labiche, 2001) have proposed a SBT technique to
design black box testing. State-based testing is primarily considered as a black box testing to generate
test cases (Briand & Labiche, 2001).

A test case is a document, which has a set of test data, expected results with preconditions and post
conditions. Test case is a particular test scenario in order to verify action against a specific requirement.
There are different types of software faults that can be found in different ways (y Hernández & Marsden,
2017). A set of test cases is called a test suite. To examine the effectiveness of the test suit, tester goes
for the mutation testing and sneak-path testing. Mutation testing technique is applied on the generated
test suite to measure its efficiency. In mutation testing, a faulty version of a software system is generated
by introducing some mutant in the software, which is known as mutant operators (Chen & Wang, 2014).

tion, missing or incorrect event, missing or incorrect action, extra missing or corrupt state, which are
difficult to detect in code-based testing. Most of these state-based faults can be avoided, if the testing is
conducted at the early phase of design.

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/coverage-criteria-for-state-based-testing/294517

Related Content

Requirements Engineering: A Review of Processes and Techniques
Fernando Flores, Manuel Mora, Francisco Alvarez, Rory O’Connorand Jorge Macias-Luevano (2009).

Handbook of Research on Modern Systems Analysis and Design Technologies and Applications (pp. 90-

104).

www.irma-international.org/chapter/requirements-engineering-review-processes-techniques/21063

Description, Classification and Discovery Approachesfor Software Components: A Comparative

Study
Sofien Khemakhem, Khalil Driraand Mohamed Jmaiel (2011). Modern Software Engineering Concepts and

Practices: Advanced Approaches (pp. 196-219).

www.irma-international.org/chapter/description-classification-discovery-approachesfor-software/51973

Assessing and Benchmarking Sustainability in Organisations: An Integrated Conceptual Model
Arunasalam Sambhanthan (2017). International Journal of Systems and Service-Oriented Engineering (pp.

22-43).

www.irma-international.org/article/assessing-and-benchmarking-sustainability-in-organisations/201206

Collective Relocation for Associative Distributed Collections of Objects
Daisuke Fujishimaand Tomio Kamada (2017). International Journal of Software Innovation (pp. 55-69).

www.irma-international.org/article/collective-relocation-for-associative-distributed-collections-of-objects/176667

State Model Diagrams: A Universal, Model Driven Method for Network System Configuration and

Management
S Maj (2011). Software Engineering for Secure Systems: Industrial and Research Perspectives (pp. 192-

210).

www.irma-international.org/chapter/state-model-diagrams/48410

http://www.igi-global.com/chapter/coverage-criteria-for-state-based-testing/294517
http://www.irma-international.org/chapter/requirements-engineering-review-processes-techniques/21063
http://www.irma-international.org/chapter/description-classification-discovery-approachesfor-software/51973
http://www.irma-international.org/article/assessing-and-benchmarking-sustainability-in-organisations/201206
http://www.irma-international.org/article/collective-relocation-for-associative-distributed-collections-of-objects/176667
http://www.irma-international.org/chapter/state-model-diagrams/48410

