
453

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 23

DOI: 10.4018/978-1-6684-3702-5.ch023

ABSTRACT

The growth of web-based applications has increased tremendously from last two decades. While these
applications bring huge benefits to society, yet they suffer from various security threats. Although there
exist various techniques to ensure the security of web applications, still a large number of applications
suffer from a wide variety of attacks and result in financial loses. In this article, a security-testing frame-
work for web applications is proposed with an argument that security of an application should be tested
at every stage of software development life cycle (SDLC). Security testing is initiated from the require-
ment engineering phase using a keyword-analysis phase. The output of the first phase serves as input to
the next phase. Different case study applications indicate that the framework assists in early detection
of security threats and applying appropriate security measures. The results obtained from the imple-
mentation of the proposed framework demonstrated a high detection ratio with a less false-positive rate.

1. INTRODUCTION

The tremendous increase in the development of software applications naturally leads to thinking about the
security aspects associated with these applications. To ensure security, testing is an important mechanism
both to identify defects and assure that the software is working as expected (Da Mota Silveira Neto, Do
Carmo MacHado, McGregor, De Almeida, & De Lemos Meira, 2011). Software testing is an important

Security Testing Framework
for Web Applications

Layla Mohammed Alrawais
Prince Sultan University, Riyadh, Saudi Arabia

Mamdouh Alenezi
 https://orcid.org/0000-0001-6852-1206

Prince Sultan University, Riyadh, Saudi Arabia

Mohammad Akour
Yarmouk University, Irbid, Jordan

454

Security Testing Framework for Web Applications

and costly activity in the software development life cycle. Furthermore, inadequate software testing
usually leads to major risks and consequences (Garousi & Zhi, 2013). The software testing activity
continues throughout the software development life cycle (SDLC) unlike the thought that the activity
of testing is performed at the end of software development. Similar to SDLC the Security Testing Life
Cycle (STLC) is shown in Figure 1:

The software from the organizations often suffers from systematic faults at different levels of SDLC.
The reason is the failure of following standard security practices (PCI Security Standards Council, 2015)
throughout the life cycle of software. Acceptance testing and penetration testing are considered too late
in the identification of bugs and at this stage, it may be possible that time and budget constraints do not
allow fixing things.

Software engineering faces several challenges from several domains in order to prevent malicious
attacks and adopt security measures. Testing is a widespread validation approach in the industry. Mean-
while, this approach is expensive, ad-hoc and unpredictable in effectiveness. Indeed, software testing
is a broad term encompassing a variety of activities along the development cycle and beyond, aimed at
different goals (Bertolino, Bertolino, & Faedo, 2007). Hence, a lot of challenges are faced by software
testing (Gao, Bai, & Tsai, 2015; Harman, Jia, & Zhang, 2015). A consistent roadmap of the most relevant
challenges to be addressed is required to be proposed.

Security testing is usually considered to be done at the end of software development and working
software is tested using penetration testing. One major limitation of this approach is considering software
testing at the end of software development activity which could be too late to tack a problem if exists
(Arkin, Stender, & McGraw, 2005).

Acceptance testing and penetration testing are thought to be effective in discovering bugs/errors
and issues. The issue with both of these testing types is that (1) penetration testing covers only certain
bugs and a certain segment of functionality and (2) late discovery of the bugs and defects may leave the
software in a state where fixing these may be prohibitively expensive in terms of time and cost.

To improve the security of software application, security models in the software development life
cycle (Howard & Lipner, 2006; McGraw, 2006; Chandra, n.d.) are proposed in decades. In this research,

Figure 1. Security throughout the SDLC (PCI Security Standards Council, 2015)

25 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/security-testing-framework-for-web-

applications/294478

Related Content

Agile Coaches and Champions: Two Hidden Facilitators of Agile Transition
Taghi Javdani Gandomaniand Mina Ziaei Nafchi (2016). Emerging Innovations in Agile Software

Development (pp. 24-36).

www.irma-international.org/chapter/agile-coaches-and-champions/145032

A Priority-Based Message Response Time Aware Job Scheduling Model for the Internet of

Things (IoT)
Sumit Kumarand Zahid Raza (2019). International Journal of Cyber-Physical Systems (pp. 1-14).

www.irma-international.org/article/a-priority-based-message-response-time-aware-job-scheduling-model-for-the-internet-

of-things-iot/239864

Software Evolution Visualization: Status, Challenges, and Research Directions
Renato Lima Novaisand Manoel Gomes de Mendonça Neto (2014). Handbook of Research on Emerging

Advancements and Technologies in Software Engineering (pp. 597-610).

www.irma-international.org/chapter/software-evolution-visualization/108638

Downsizing the Semantic Gap in Contextual Image Retrieval System Using Superintend Gross

Silhouette Descriptor: Superintend Gross Silhouette Descriptor
Girija G. Chiddarwarand S.Phani Kumar (2020). International Journal of Software Innovation (pp. 1-20).

www.irma-international.org/article/downsizing-the-semantic-gap-in-contextual-image-retrieval-system-using-superintend-

gross-silhouette-descriptor/262095

A Review of Software Quality Methodologies
Saqib Saeed, Farrukh Masood Khawajaand Zaigham Mahmood (2014). Software Design and

Development: Concepts, Methodologies, Tools, and Applications (pp. 34-49).

www.irma-international.org/chapter/review-software-quality-methodologies/77698

http://www.igi-global.com/chapter/security-testing-framework-for-web-applications/294478
http://www.igi-global.com/chapter/security-testing-framework-for-web-applications/294478
http://www.irma-international.org/chapter/agile-coaches-and-champions/145032
http://www.irma-international.org/article/a-priority-based-message-response-time-aware-job-scheduling-model-for-the-internet-of-things-iot/239864
http://www.irma-international.org/article/a-priority-based-message-response-time-aware-job-scheduling-model-for-the-internet-of-things-iot/239864
http://www.irma-international.org/chapter/software-evolution-visualization/108638
http://www.irma-international.org/article/downsizing-the-semantic-gap-in-contextual-image-retrieval-system-using-superintend-gross-silhouette-descriptor/262095
http://www.irma-international.org/article/downsizing-the-semantic-gap-in-contextual-image-retrieval-system-using-superintend-gross-silhouette-descriptor/262095
http://www.irma-international.org/chapter/review-software-quality-methodologies/77698

