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ABSTRACT

Optimization has been an active area of research for several decades. As many real-world optimization 
problems become increasingly complex, better optimization algorithms are always needed. Recently, 
meta-heuristic global optimization algorithms have become a popular choice for solving complex and 
intricate problems, which are otherwise difficult to solve by traditional methods. This chapter reviews 
the recent applications of ant colony optimization (ACO) algorithm in the field of electrical power sys-
tems. Also, the progress of the ACO algorithm and its recent developments are discussed. This chapter 
covers the aspects like (1) basics of ACO algorithm, (2) progress of ACO algorithm, (3) classification 
of electrical power system applications, and (4) future of ACO for modern power systems application.
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Box. List of symbols

Symbol Definition

τij pheromone trail deposit ed between city i and j by ant k,

α and β two parameters which influence the relative weight of pheromone trail and heuristic guide function,

ηij visibility or sight and equal to the inverse of the distance or (= 1/dij).

ηij transition cost between city i and j

q cities that will be visited after city i,

Ni
k a tabu list in the memory of ant that recodes the cities visited to avoid stagnations

τij(t+1) pheromone after one tour or iteration

ρ pheromone evaporation

ε elite path weighting constant

τo= 1/ dij incremental value of pheromone of each ant

λ large positive constant

dbest shortest tour distance.

Pgj and Qgj active/reactive power outputs from the generator bus j

Pdj and Qdj active and reactive power demand at bus j,

Vi and Vj voltages at sending end i and receiving end j,

Yij and θij admittance magnitude and angle between buses i and j

δi and δj phase angles of voltages at buses i and j,

PDGj and QDGj active and reactive power injections at location j,

QCj the reactive power injection at location j.

VSIj the voltage stability index of bus j,

Vi, the voltage magnitude of sending end bus i

Pj and Qj the total active and reactive power load fed through bus j,

Rij and Xij the resistance and reactance of the line connected buses i and j, respectively.

w1, w2 and w3 weighting factors.

PLoss the total real power loss

Pi and Qi the net active and reactive power at bus i,

Nb the system buses number.

Rij line resistance between buses i and j,

VD total voltage deviation

VSI voltage stability index

Gij and Bij mutual conductance and susceptance between bus i and j,

NPQ load buses number

P QL Li i
 and  active and reactive power demand at bus i

QCi capacitive or inductive power of existing VAR source installed at bus i.

Npv total number of voltage-controlled buses;

Tk tapping change of a transformer

Nt total number of on-load tap changing transformers.
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