
 1079

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.29
Bug Fixing Practices within

Free/Libre Open Source
Software Development Teams1

Kevin Crowston
Syracuse University, USA

Barbara Scozzi
Politecnico di Bari, Italy

Abstract

Free/Libre open source software (FLOSS, e.g.,
Linux or Apache) is primarily developed by
distributed teams. Developers contribute from
around the world and coordinate their activity
almost exclusively by means of email and bulletin
boards, yet some how profit from the advantages
and evade the challenges of distributed software
development. In this article we investigate the
structure and the coordination practices adopted
by development teams during the bug-fixing
process, which is considered one of main areas
of FLOSS project success. In particular, based
on a codification of the messages recorded in the
bug tracking system of four projects, we identify
the accomplished tasks, the adopted coordination
mechanisms, and the role undertaken by both
the FLOSS development team and the FLOSS

community. We conclude with suggestions for
further research.

INTRODUCTION

In this article, we investigate the coordination
practices for software bug fixing in Free/Libre
open source software (FLOSS) development
teams. Key to our interest is that most FLOSS
software is developed by distributed teams, that
is, geographically dispersed groups of individuals
working together over time towards a common
goal (Ahuja et al., 1997, p. 165; Weisband, 2002).
FLOSS developers contribute from around the
world, meet face to face infrequently, if at all, and
coordinate their activity primarily by means of
computer mediated communications (Raymond,
1998; Wayner, 2000). As a result, distributed teams

1080

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

employ processes that span traditional boundar-
ies of place and ownership. Since such teams are
increasingly commonly used in a diversity of
settings, it is important to understand how team
members can effectively coordinate their work.

The research literature on distributed work and
on software development specifically emphasizes
the difficulties of distributed software develop-
ment, but the case of FLOSS development presents
an intriguing counter-example, at least in part:
a number of projects have been outstandingly
successful. What is perhaps most surprising is
that FLOSS development teams seem not to use
many traditional coordination mechanisms such
as formal planning, system level design, schedules
and defined development processes (Mockus et
al., 2002, p. 310). As well, many (though by no
means all) programmers contribute to projects
as volunteers, without working for a common
organization and/or being paid.

The contribution of this article is to document
the process of coordination in effective FLOSS
teams for a particularly important process, namely
bug fixing. These practices are analyzed by adopt-
ing a process theory, that is, we investigate which
tasks are accomplished, how and by whom they are
assigned, coordinated, and performed. In particu-
lar, we selected four FLOSS projects, inductively
coded the steps involved in fixing various bugs
as recorded in the projects’ bug tracking systems
and applied coordination theory to identify tasks
and coordination mechanisms carried out within
the bug-fixing process.

Studying coordination of FLOSS processes
is important for several reasons. First, FLOSS
development is an important phenomenon deserv-
ing of study for itself. FLOSS is an increasingly
important commercial issue involving all kind
of software firms. Million of users depend on
systems such as Linux and the Internet (heavily
dependent on FLOSS software tools) but as Scac-
chi notes “little is known about how people in these
communities coordinate software development
across different settings, or about what software

processes, work practices, and organizational
contexts are necessary to their success” (Scac-
chi, 2002, p. 1; Scacchi, 2005). Understanding
the reasons that some projects are effective while
others are not is a further motivation for study-
ing the FLOSS development processes. Second,
studying how distributed software developers
coordinate their efforts to ensure, at least in some
cases, high-performance outcomes has both theo-
retical and managerial implications. It can help
understanding coordination practices adopted in
social collectives that are not governed, at least
apparently, by a formal organizational structure
and are characterized by many other discontinui-
ties that is, lack of coherence in some aspects of
the work setting: organization, function, member-
ship, language, culture, etc. (Watson-Manheim
et al., 2002). As to the managerial implications,
distributed teams of all sorts are increasingly used
in many organizations. The study could be useful
to managers that are considering the adoption of
this organizational form not only in the field of
software development.

The remainder of the article is organized as
follows. In Section 2 we discuss the theoretical
background of the study. In Section 3 we stress
the relevance of process theory so explaining why
we adopted such a theoretical approach. We then
describe coordination theory and use it to describe
the bug-fixing process as carried out in traditional
organizations. The research methodology adopted
to study the bug-fixing process is described in
Section 4. In Section 5 and 6 we describe and
discuss the study’s results. Finally, in Section 7
we draw some conclusions and propose future
research directions.

BACKGROUND

In this section we provide an overview of the
literature on software development in distributed
environment and the FLOSS phenomenon.

30 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/bug-fixing-practices-within-free/29435

Related Content

Hybrid Approaches
Vincenzo De Florio (2009). Application-Layer Fault-Tolerance Protocols (pp. 275-300).

www.irma-international.org/chapter/hybrid-approaches/5129

Exploration and Exploitation of Developers' Sentimental Variations in Software Engineering
Md Rakibul Islamand Minhaz F. Zibran (2016). International Journal of Software Innovation (pp. 35-55).

www.irma-international.org/article/exploration-and-exploitation-of-developers-sentimental-variations-in-software-

engineering/166542

A UML-Compliant Approach for Intelligent Reconfiguration of Embedded Control Systems
Amen Ben Hadj Ali, Mohamed Khalgui, Samir Ben Ahmedand Antonio Valentini (2013). Embedded

Computing Systems: Applications, Optimization, and Advanced Design (pp. 108-124).

www.irma-international.org/chapter/uml-compliant-approach-intelligent-reconfiguration/76953

Engineering Reusable Learning Objects
Ed Morris (2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp. 718-735).

www.irma-international.org/chapter/engineering-reusable-learning-objects/29418

Knowledge Management in Software Process Improvement: A Case Study of Very Small Entities
Shuib Bin Basriand Rory V. O’Connor (2011). Knowledge Engineering for Software Development Life

Cycles: Support Technologies and Applications (pp. 273-288).

www.irma-international.org/chapter/knowledge-management-software-process-improvement/52888

http://www.igi-global.com/chapter/bug-fixing-practices-within-free/29435
http://www.irma-international.org/chapter/hybrid-approaches/5129
http://www.irma-international.org/article/exploration-and-exploitation-of-developers-sentimental-variations-in-software-engineering/166542
http://www.irma-international.org/article/exploration-and-exploitation-of-developers-sentimental-variations-in-software-engineering/166542
http://www.irma-international.org/chapter/uml-compliant-approach-intelligent-reconfiguration/76953
http://www.irma-international.org/chapter/engineering-reusable-learning-objects/29418
http://www.irma-international.org/chapter/knowledge-management-software-process-improvement/52888

