546

Chapter 2.3
Class Patterns and Templates in
Software Design

Julio Sanchez
Minnesota State University, Mankato, USA

Maria P. Canton
South Central College, USA

ABSTRACT

This chapter describes the use of design patterns
as reusable components in program design. The
discussionincludes the two core elements: the class
diagram and examples implemented in code. The
authors believe that although precanned patterns
havebeen popularinthe literature, itis the patterns
that we personally create or adapt that are most
useful. Only after gaining intimate familiarity
with a particular class structure will we be able to
use it in an application. In addition to the conven-
tional treatment of class patterns, the discussion
includes the notion of a class template. A template
describes functionality and objectrelations within
asingle class, while patterns refer to structures of
communicating and interacting classes. The class
template fosters reusability by providing a guide
insolvinga specific implementation problem. The
chapterincludes several class templates that could
be useful to the software developer.

DESIGN PATTERNS

Engineers and architects have reused design
elements for many years (Alexander, Ishikawa,
Silverstein, Jacobson, Fiksdahl-King, & Angel,
1977); however, the notion of reusing elements
of software design dates back only to the early
1990s. The work of Anderson (1990), Coplien
(1992), and Beck and Johnson (1994) set the
background for the book Design Patterns by
Gamma, Helm, Johnson, and Vlissides (1995),
which many considered the first comprehensive
work on the subject.

The main justification for reusing program
design components is based on the fact that the
design stage is one of the most laborious and
time-consuming phases of program development.
Design reuse is founded in the assumption that
once a programmer or programming group has
found a class or object structure that solves a
particular design problem, this pattern can then
be reused in other projects, with considerable
savings in the design effort. Anyone who has
participated in the development of a substantial

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



Class Patterns and Templates in Software Design

software project appreciates the advantages of
reusing program design components.

The present-day approach to design reuse is
based on a model of class associations and rela-
tionships called a class pattern oran object model.
In this sense, a pattern is a solution to a design
problem. Therefore, a programming problem is at
the origin of every pattern. From this assumption
we deduce that a pattern must offer a viable solu-
tion; it must represent a class structure that can
be readily coded in the language of choice.

The fact that a programming problem is at the
root of every design pattern, and the assumption
that the solution offered by a particular pattern
must be readily implementable in code, are the
premises on which we base our approach to this
topic. Inthe context of this chapter we see a design
pattern as consisting of two core elements: a class
diagram and a coded example or template, fully
implemented in code. Every working programmer
knows how to take a piece of existing code and
reengineer it to solve the problem at hand. How-
ever, snippets of code that may or may not compile
correctly are more a tease than a real aide.

Although we consider that design patterns are
areasonable and practical methodology, we must
also add that it is the patterns that we ourselves
create, refine, or adapt that are the most useful.
It is difficult to believe that we can design and
code a program based on someone else’s class
diagrams. Program design and coding is a task
too elaborate and complicated to be done by
imitation or by proxy. A programmer must gain
intimate familiarity with a particular class and
object structure before committing to its adoption
inaproject. These thoughts lead to the conclusion
that it is more important to explain how we can
develop our own design patterns than to offer an
extensive catalog of someone’s class diagrams,
which can be difficult to understand, and even
more difficult to apply.

CLASS TEMPLATES

Occasionally, aprogrammer or program designer’s
need is not for a structure of communicating and
interacting classes but for a description of the
implementation of a specific functionality within
a single class. In this case we can speak of a class
template rather than of a pattern. The purpose of
a class template is also to foster reusability by
providing a specific guide for solving a particular
implementation problem. In the following sections
we include several class templates that could be
useful to the practicing developer.

A Pattern is Born

We begin our discussion by following through
the development of a design pattern, from the
original problem, through a possible solution, to
its implementation in code, and concluding in a
general-purpose class diagram.

One of the most obvious and frequent uses of
dynamic polymorphism is in the implementation
of class libraries. The simplest usable architec-
ture is by means of an abstract class and several
modules in the form of derived classes that pro-
vide the specific implementations of the library’s
functionality. Client code accesses a polymorphic
method in the base class and the corresponding
implementation is selected according to the object
referenced. But in the real world a library usually
consists of more than one method. Since many
languages allow mixing virtual and nonvirtual
functions in an abstract class, it is possible to
include nonvirtual methods along with virtual and
pure virtual ones. The problem in this case is that
abstract classes cannot be instantiated; therefore,
client code cannot create an object through which
it can access the nonvirtual methods in the base
class. A possible but not very effective solution
is to use one of the derived classes to access the
nonvirtual methods in the base class. Figure 1
depicts this situation.

547



40 more pages are available in the full version of this document, which may
be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/class-patterns-templates-software-design/29409

Related Content

Role of Usability in E-Learning System: An Empirical Study of OWASP WebGoat

Muhammad Ahmad Aminand Saqib Saeed (2015). Human Factors in Software Development and Design
(pp. 295-312).

www.irma-international.org/chapter/role-of-usability-in-e-learning-system/117308

The Logic Behind Negotiation: From Pre-Argument Reasoning to Argument-Based Negotiation
Luis Brito, Paulo Novaisand Jose Neves (2003). Intelligent Agent Software Engineering (pp. 137-159).
www.irma-international.org/chapter/logic-behind-negotiation/24148

Influence of Social Media Analytics on Online Food Delivery Systems

Ravindra Kumar Singhand Harsh Kumar Verma (2020). International Journal of Information System
Modeling and Design (pp. 1-21).
www.irma-international.org/article/influence-of-social-media-analytics-on-online-food-delivery-systems/259386

IT Governance or IT Outsourcing: Is There a Clear Winner?

Michael D. Dorseyand Mahesh S. Raisinghani (2019). Interdisciplinary Approaches to Information Systems
and Software Engineering (pp. 19-32).

www.irma-international.org/chapter/it-governance-or-it-outsourcing/226394

Handling Minority Class Problem in Threats Detection Based on Heterogeneous Ensemble
Learning Approach

Hope Eke, Andrei Petrovskiand Hatem Ahriz (2020). International Journal of Systems and Software
Security and Protection (pp. 13-37).
www.irma-international.org/article/handling-minority-class-problem-in-threats-detection-based-on-heterogeneous-

ensemble-learning-approach/259418



http://www.igi-global.com/chapter/class-patterns-templates-software-design/29409
http://www.irma-international.org/chapter/role-of-usability-in-e-learning-system/117308
http://www.irma-international.org/chapter/logic-behind-negotiation/24148
http://www.irma-international.org/article/influence-of-social-media-analytics-on-online-food-delivery-systems/259386
http://www.irma-international.org/chapter/it-governance-or-it-outsourcing/226394
http://www.irma-international.org/article/handling-minority-class-problem-in-threats-detection-based-on-heterogeneous-ensemble-learning-approach/259418
http://www.irma-international.org/article/handling-minority-class-problem-in-threats-detection-based-on-heterogeneous-ensemble-learning-approach/259418

