
��0

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.26
Software Modernization of

Legacy Systems for
Web Services Interoperability

Chia-Chu Chiang
University of Arkansas at Little Rock, USA

IntroductIon

Software maintenance is an inevitable process
due to program evolution (Lehman & Belady,
1985). Adaptive maintenance (Schenidewind,
1987) is an activity used to adapt software to new
environments or new requirements due to the
evolving needs of new platforms, new operating
systems, new software, and evolving business
requirements. For example, companies have been
adapting their legacy systems to Web-enabling
environments of doing business that could not have
been imagined even a decade ago (Khosrow-Pour
& Herman, 2001; Werthner & Ricci, 2004).

To understand software modernization of
legacy systems for Web services, it is necessary to
address how legacy integration has evolved from
centralized computing to distributed, component-
based computing due to the advent and widespread
use of object-oriented and client-server technolo-
gies. Legacy systems were typically developed on
a centralized, terminal-to-host architecture. Users

usually accessed their legacy systems through
terminals that included character-based menus and
data entry screens. Consequently, legacy systems
built on the central mainframe are inaccessible
remotely without adaptations.

Component-based middleware technolo-
gies, such as Java RMI, common object request
broker architecture (CORBA), and component
object model/distributed component object model
(COM/DCOM), provide solutions to support the
interoperability of legacy systems in a heteroge-
neous and distributed environment (Chiang, 2001).
Unfortunately, the technologies have proved to be
insufficient in application integration solutions
for several reasons (Stal, 2002). Although the
technologies share common communication archi-
tectural foundations, the implementation of each
technology differs in several aspects, including
the object models provided, the communication
protocols, and data marshaling/demarshaling.
Due to the proprietary implementations of the
technologies, they do not interoperate well with

 ���

Software Modernization of Legacy Systems for web Services interoperability

each other. Obviously, existing component-based
middleware only partially solves the interoper-
ability problems of legacy systems. More effort is
still required to make the legacy systems totally
interoperable in a heterogeneous and distributed
environment.

Background

Web services have been widely considered as a
better solution to legacy integration for software
interoperability using open standards that include
extensible markup language (XML), the simple
object access protocol (SOAP), the Web services
description language (WSDL), and the universal
description, discovery, and integration (UDDI)
(Chung, Lin, & Mathieu, 2003; Stal, 2002; Zhang
& Yang, 2004). Service requesters and providers
follow the Web service standards for message
exchanges. When a service provider has a service
for public exposure, it must write a description
of the service in WSDL and register the service
description with UDDI to a global repository. A
service requester can then query the repository
using UDDI to retrieve the service description. The
service requester uses the service description in
WSDL to send requests, and the service provider
replies to the requests under SOAP.

Legacy modernIzatIon for
weB ServIceS and chaLLengeS

There are three main reasons for modernizing
legacy systems: to reduce the system evolution
risk, to recoup the investment on the systems,
and to make the system distributed and scalable
for business-to-consumer and business-to-busi-
ness, as well as making it highly available to
Web users.

Companies usually have two approaches to
turn their legacy systems into Web services:
wrapping and reengineering. Wrapping provides a

cost-effective way to integrate legacy systems with
Web services into a heterogeneously distributed
computing environment. Unfortunately, the wrap-
ping approach requires the whole legacy system to
be exposed to the public as a Web service, which
fails to properly abstract the system (Vinoski,
2002; Vogels, 2003). Furthermore, the wrapping
approach increases the difficulty of maintaining
the legacy system in the long run. Thus, the wrap-
ping approach is generally a temporary solution,
rather than a strategic one. The reengineering
approach applies reverse engineering techniques
to legacy systems to recover business rules, and
develop Web services from the extracted business
rules. This approach streamlines legacy systems
but is highly dependent on the success of recovery
on the business rules from legacy systems.

Wrapping legacy systems for Web services
can be performed through wrappers or adapters.
A wrapper is built to encapsulate a legacy system
and provide access to the legacy system through
the encapsulation layer. This layer exposes only
the methods with parameter attributes to remote
service requesters. In addition, the wrapper must
resolve the incompatible communication issues
between the legacy systems and the Web server us-
ing SOAP/XML messaging. Therefore, program-
mers are required to write a wrapper to reconcile
the issues, as well as a WSDL for public exposure.
Unfortunately, a wrapper is difficult to maintain,
inefficient, and error-prone (Engelen, Gupta, &
Pant, 2003). A sample Web service architecture
via a wrapper is shown in Figure 1.

Turning legacy systems in middleware-based
components into Web services is slightly differ-
ent from the technique described above. Because
the legacy system has already been wrapped in
middleware, companies may be unwilling to un-
wrap their systems in order to turn the system
into a Web service. Fortunately, there are Web
services toolkits available to turn middleware-
based componentized legacy systems into Web
services (Engelen, Gupta, & Pant, 2003). First,
the toolkits translate the interface definition of a

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-modernization-legacy-systems-

web/29398

Related Content

Five Small Secrets to Systems Success
Larry R. Coe (2001). Strategies for Managing Computer Software Upgrades (pp. 14-27).

www.irma-international.org/chapter/five-small-secrets-systems-success/98486

An Insight into State-of-the-Art Techniques for Big Data Classification
Neha Bansal, R.K. Singhand Arun Sharma (2017). International Journal of Information System Modeling

and Design (pp. 24-42).

www.irma-international.org/article/an-insight-into-state-of-the-art-techniques-for-big-data-classification/204370

Software Agent Technology: An Overview
Chrysanthi E. Georgakarakouand Anastasios A. Economides (2009). Software Applications: Concepts,

Methodologies, Tools, and Applications (pp. 128-151).

www.irma-international.org/chapter/software-agent-technology/29386

Metadata Design of a Content Management System for Music Virtual Learning Environment
Agnes Wai Yan Chan, Elza Yin Ling Chan, Will Chi Kit Lee, Benny Yu Ming Leungand Dickson K.W. Chiu

(2015). International Journal of Systems and Service-Oriented Engineering (pp. 56-76).

www.irma-international.org/article/metadata-design-of-a-content-management-system-for-music-virtual-learning-

environment/125844

A Strategy for Managing Complexity of the Global Market and Prototype Real-Time Scheduler

for LEGO Supply Chain
Bjorn Madsen, George Rzevski, Petr Skobelevand Alexander Tsarev (2013). International Journal of

Software Innovation (pp. 28-39).

www.irma-international.org/article/a-strategy-for-managing-complexity-of-the-global-market-and-prototype-real-time-

scheduler-for-lego-supply-chain/89773

http://www.igi-global.com/chapter/software-modernization-legacy-systems-web/29398
http://www.igi-global.com/chapter/software-modernization-legacy-systems-web/29398
http://www.irma-international.org/chapter/five-small-secrets-systems-success/98486
http://www.irma-international.org/article/an-insight-into-state-of-the-art-techniques-for-big-data-classification/204370
http://www.irma-international.org/chapter/software-agent-technology/29386
http://www.irma-international.org/article/metadata-design-of-a-content-management-system-for-music-virtual-learning-environment/125844
http://www.irma-international.org/article/metadata-design-of-a-content-management-system-for-music-virtual-learning-environment/125844
http://www.irma-international.org/article/a-strategy-for-managing-complexity-of-the-global-market-and-prototype-real-time-scheduler-for-lego-supply-chain/89773
http://www.irma-international.org/article/a-strategy-for-managing-complexity-of-the-global-market-and-prototype-real-time-scheduler-for-lego-supply-chain/89773

