
242

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.20
Handling of Software

Quality Defects in Agile
Software Development

Jörg Rech
Fraunhofer Institute for Experiemental Software Engineering (IESE), Germany

Abstract

Software quality assurance is concerned with
the efficient and effective development of large,
reliable, and high-quality software systems. In
agile software development and maintenance,
refactoring is an important phase for the continu-
ous improvement of a software system by remov-
ing quality defects like code smells. As time is a
crucial factor in agile development, not all quality
defects can be removed in one refactoring phase
(especially in one iteration). Documentation of
quality defects that are found during automated
or manual discovery activities (e.g., pair pro-
gramming) is necessary to avoid wasting time by
rediscovering them in later phases. Unfortunately,
the documentation and handling of existing qual-
ity defects and refactoring activities is a common
problem in software maintenance. To recall the
rationales why changes were carried out, informa-
tion has to be extracted from either proprietary
documentations or software versioning systems.

In this chapter, we describe a process for the re-
curring and sustainable discovery, handling, and
treatment of quality defects in software systems.
An annotation language is presented that is used
to store information about quality defects found
in source code and that represents the defect and
treatment history of a part of a software system.
The process and annotation language can not
only be used to support quality defect discovery
processes, but is also applicable in testing and
inspection processes.

Introduction

The success of software organizations—espe-
cially those that apply agile methods—depends on
their ability to facilitate continuous improvement
of their products in order to reduce cost, effort,
and time-to-market, but also to restrain the ever
increasing complexity and size of software sys-
tems. Nowadays, industrial software development

 243

Handling of Software Quality Defects in Agile Software Development

is a highly dynamic and complex activity, which
is not only determined by the choice of the right
technologies and methodologies, but also by the
knowledge and skills of the people involved. This
increases the need for software organizations to
develop or rework existing systems with high
quality within short periods of time using auto-
mated techniques to support developers, testers,
and maintainers during their work.

Agile software development methods were
invented to minimize the risk of developing
low-quality software systems with rigid process-
based methods. They impose as little overhead
as possible in order to develop software as fast
as possible and with continuous feedback from
the customers. These methods (and especially
extreme programming (XP)) are based upon
several core practices, such as simple design,
meaning that systems should be built as simply
as possible and complexity should be removed,
if at all possible.

In agile software development, organizations
use quality assurance activities like refactoring
to tackle defects that reduce software quality.
Refactoring is necessary to remove quality de-
fects (i.e., bad smells in code, architecture smells,
anti-patterns, design flaws, negative design
characteristics, software anomalies, etc.), which
are introduced by quick and often unsystematic
development. As time is a crucial factor in agile
development, not all quality defects can be re-
moved in one refactoring phase (especially in one
iteration). But the effort for the manual discovery,
handling, and treatment of these quality defects
results in either incomplete or costly refactoring
phases.

A common problem in software maintenance is
the lack of documentation to store this knowledge
required for carrying out the maintenance tasks.
While software systems evolve over time, their
transformation is either recorded explicitly in a
documentation or implicitly through a versioning
system. Typically, problems encountered or deci-
sions made during the development phases get lost

and have to be rediscovered in later maintenance
phases. Both expected and unexpected CAPP
(corrective, adaptive, preventive, or perfective)
activities use and produce important information,
which is not systematically recorded during the
evolution of a system. As a result, maintenance
becomes unnecessarily hard and the only coun-
termeasures are, for example, to document every
problem, incident, or decision in a documentation
system like bugzilla (Serrano & Ciordia, 2005).
The direct documentation of quality defects that
are found during automated or manual discovery
activities (e.g., code analyses, pair programming,
or inspections) is necessary to avoid wasting time
by rediscovering them in later phases.

In order to support software maintainers
in their work, we need a central and persistent
point (i.e., across the product’s life cycle) where
necessary information is stored. To address this
issue, we introduce our annotation language,
which can be used to record information about
quality characteristics and defects found in
source code, and which represents the defect and
treatment history of a part of a software system.
The annotation language can not only be used
to support quality defect discovery processes,
but is also applicable for testing and inspection
processes. Furthermore, the annotation language
can be exploited for tool support, with the tool
keeping track and guiding the developer through
the maintenance procedure.

Our research is concerned with the develop-
ment of techniques for the discovery of quality
defects as well as a quality-driven and experience-
based method for the refactoring of large-scale
software systems. The instruments developed
consist of a technology and methodology to sup-
port decisions of both managers and engineers.
This support includes information about where,
when, and in what configuration quality defects
should be engaged to reach a specific configuration
of quality goals (e.g., improve maintainability or
reusability). Information from the diagnosis of
quality defects supports maintainers in select-

22 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/handling-software-quality-defects-agile/29392

Related Content

Exploring the Perceived End-Product Quality in Software-Developing Organizations
Jussi Kasurinen, Ossi Taipale, Jari Vanhanenand Kari Smolander (2012). International Journal of

Information System Modeling and Design (pp. 1-32).

www.irma-international.org/article/exploring-perceived-end-product-quality/65560

A Review of the IT Service Design Process in Agile ITSM Frameworks
Manuel Mora, Jorge Marx Gómez, Fen Wangand Edgar Oswaldo Díaz (2021). Balancing Agile and

Disciplined Engineering and Management Approaches for IT Services and Software Products (pp. 248-

270).

www.irma-international.org/chapter/a-review-of-the-it-service-design-process-in-agile-itsm-frameworks/259181

Agile Software Engineering
Ernest Mnkandla (2010). Handbook of Research on Software Engineering and Productivity Technologies:

Implications of Globalization (pp. 28-37).

www.irma-international.org/chapter/agile-software-engineering/37022

A Smart Security Drones for Farms Using Software Architecture
Yoki Karl, Haeng-Kon Kimand Jong-Halk Lee (2020). International Journal of Software Innovation (pp. 40-

49).

www.irma-international.org/article/a-smart-security-drones-for-farms-using-software-architecture/262097

The Factors Affecting Continuous Usage Intention of Computer-Aided Engineering (CAE)

Software
Yong Won Cho, Dae Sik Kim, Huy Tung Phuongand Gwangyong Gim (2022). International Journal of

Software Innovation (pp. 1-13).

www.irma-international.org/article/the-factors-affecting-continuous-usage-intention-of-computer-aided-engineering-cae-

software/297508

http://www.igi-global.com/chapter/handling-software-quality-defects-agile/29392
http://www.irma-international.org/article/exploring-perceived-end-product-quality/65560
http://www.irma-international.org/chapter/a-review-of-the-it-service-design-process-in-agile-itsm-frameworks/259181
http://www.irma-international.org/chapter/agile-software-engineering/37022
http://www.irma-international.org/article/a-smart-security-drones-for-farms-using-software-architecture/262097
http://www.irma-international.org/article/the-factors-affecting-continuous-usage-intention-of-computer-aided-engineering-cae-software/297508
http://www.irma-international.org/article/the-factors-affecting-continuous-usage-intention-of-computer-aided-engineering-cae-software/297508

