
 ��

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.5
Open Source Software:
Strengths and Weaknesses

Zippy Erlich
The Open University of Israel, Israel

Reuven Aviv
The Open University of Israel, Israel

aBStract

The philosophy underlying open source software
(OSS) is enabling programmers to freely access
the software source by distributing the software
source code, thus allowing them to use the soft-
ware for any purpose, to adapt and modify it, and
redistribute the original or the modified source
for further use, modification, and redistribution.
The modifications, which include fixing bugs and
improving the source, evolve the software. This
evolutionary process can produce better software
than the traditional proprietary software, in which
the source is open only to a very few program-
mers and is closed to everybody else who blindly
use it but cannot change or modify it. The idea of
open source software arose about 20 years ago
and in recent years is breaking out into the edu-
cational, commercial, and governmental world.
It offers many opportunities when implemented
appropriately. The chapter will present a detailed

definition of open source software, its philosophy,
its operating principles and rules, and its strengths
and weaknesses in comparison to proprietary
software. A better understanding of the philosophy
underlying open source software will motivate
programmers to utilize the opportunities it offers
and implement it appropriately.

IntroductIon

Open source software (OSS) has attracted sub-
stantial attention in recent years and continues
to grow and evolve. The philosophy underlying
OSS is to allow users free access to, and use of,
software source code, which can then be adapted,
modified, and redistributed in its original or
modified form for further use, modification, and
redistribution. OSS is a revolutionary software
development methodology (Eunice, 1998) that
involves developers in many locations throughout

�0

Open Source Software

the world who share code in order to develop and
refine programs. They fix bugs, adapt and improve
the program, and then redistribute the software,
which thus evolves. Advocates of OSS are quick
to point to the superiority of this approach to
software development. Some well-established
software development companies, however, view
OSS as a threat (AlMarzouq, Zheng, Rong, &
Grover, 2005).

Both the quality and scope of OSS are grow-
ing at an increasing rate. There are already free
alternatives to many of the basic software tools,
utilities, and applications, for example, the free
Linux operating system (Linux Online, 2006), the
Apache Web server (Apache Software Founda-
tion, 2006; Mockus, Fielding, & Herbsleb, 2000),
and the Sendmail mail server (Sendmail Consor-
tium, 2006). With the constant improvement of
OSS packages, there are research projects, even
complex ones, that entirely rely on OSS (Zaritski,
2003). This opens new research and educational
opportunities for installations and organizations
with low software budgets.

Incremental development and the continuity
of projects over long periods of time are distinc-
tive features of OSS development. The software
development processes of large OSS projects are
diverse in their form and practice. Some OSS
begins with releasing a minimal functional code
that is distributed for further additions, modifi-
cation, and improvement by other developers, as
well as by its original authors, based on feedback
from other developers and users. However, open
source projects do not usually start from scratch
(Lerner & Tirole, 2001). The most successful OSS
projects, like Linux and Apache, are largely based
on software provided by academic and research
institutions. In recent years, more and more OSS
has been derived from original software provided
by for-profit companies.

A large potential-user community is not
enough to make an OSS project successful. It
requires dedicated developers. In Raymond’s
(1998) words, “The best OSS projects are those

that scratch the itch of those who know how to
code.” For example, the very successful Linux
project attracted developers who had a direct
interest in improving an operating system for
their own use. Similarly, webmaster developers
contributed to the development of the Apache
Web server project.

Despite the characterization of the OSS ap-
proach as ad hoc and chaotic, OSS projects appear,
in many cases, to be highly organized, with tool
support that focuses on enhancing human col-
laboration, creativity, skill, and learning (Lawrie
& Gacek, 2002). The good initial structural de-
sign of an OSS project is the key to its success.
A well-modularized design allows contributors
to carve off chunks on which they can work. In
addition, the adoption of utility tools and the use
of already existing OSS components are neces-
sary if an OSS project is to succeed.

The growing interest of commercial organiza-
tions in developing and exploiting OSS has led
to an increased research focus on the business-
model aspects of the OSS phenomenon. There
are a number of business models for OSS, all of
which assume the absence of traditional software
licensing fees (Hecker, 2000). The economics of
OSS projects is different from that of proprietary
projects (Lerner & Tirole, 2002). Models of effort
and cost estimation in the development of projects
involving OSS are needed (Asundi, 2005).

In the past, most OSS applications were not
sufficiently user friendly and intuitive, and only
very knowledgeable users could adapt the soft-
ware to their needs. Although the use of OSS is
growing, OSS is still mainly used by technically
sophisticated users, and the majority of aver-
age computer users use standard commercial
proprietary software (Lerner & Tirole, 2002).
The characteristics of open source development
influence OSS usability (Behlendorf, 1999; Nich-
ols, Thomson, & Yeates, 2001; Raymond, 1999),
which is often regarded as one of the reasons for
its limited use. In recent years, the open source
community has shown increased awareness of

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/open-source-software/29377

Related Content

Lightweight and Secure Image Segmentation-Based Consensus Mechanism
Jianquan Ouyang, Jiajun Yinand Yuxiang Sun (2020). International Journal of Systems and Service-

Oriented Engineering (pp. 18-33).

www.irma-international.org/article/lightweight-and-secure-image-segmentation-based-consensus-mechanism/263786

Malware Analysis With Machine Learning: Methods, Challenges, and Future Directions
Ravi Singhand Piyush Kumar (2023). Malware Analysis and Intrusion Detection in Cyber-Physical Systems

(pp. 215-237).

www.irma-international.org/chapter/malware-analysis-with-machine-learning/331306

Reconfiguration of Industrial Embedded Control Systems
Mohamed Khalguiand Hans-Michael Hanisch (2010). Behavioral Modeling for Embedded Systems and

Technologies: Applications for Design and Implementation (pp. 318-352).

www.irma-international.org/chapter/reconfiguration-industrial-embedded-control-systems/36348

Different Views of Software Quality
Bernard Wong (2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp. 266-

290).

www.irma-international.org/chapter/different-views-software-quality/29393

Trust in Open Source Software Development Communities: A Comprehensive Analysis
Amitpal Singh Sohal, Sunil Kumar Guptaand Hardeep Singh (2022). Research Anthology on Agile

Software, Software Development, and Testing (pp. 412-433).

www.irma-international.org/chapter/trust-in-open-source-software-development-communities/294476

http://www.igi-global.com/chapter/open-source-software/29377
http://www.irma-international.org/article/lightweight-and-secure-image-segmentation-based-consensus-mechanism/263786
http://www.irma-international.org/chapter/malware-analysis-with-machine-learning/331306
http://www.irma-international.org/chapter/reconfiguration-industrial-embedded-control-systems/36348
http://www.irma-international.org/chapter/different-views-software-quality/29393
http://www.irma-international.org/chapter/trust-in-open-source-software-development-communities/294476

