
 11

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.2
Free Software Philosophy and

Open Source
Niklas Vainio

University of Tampere, Finland

Tere Vadén
University of Tampere, Finland

Abstract

This chapter introduces and explains some of
the most relevant features of the free software
philosophy formulated by Richard M. Stallman
in the 1980s. The free software philosophy and
the free software movement built on it histori-
cally preceded the open source movement by a
decade and provided some of the key technologi-
cal, legal and ideological foundations of the open
source movement. Thus, in order to study the
ideology of open source and its differences with
regard to other modes of software production,
it is important to understand the reasoning and
the presuppositions included in Stallman’s free
software philosophy.

Introduction

The free software (FS) movement is the key
predecessor of the open source (OS) community.
The FS movement, in turn, is based on arguments
developed by Richard M. Stallman. In crucial
ways, Stallman’s social philosophy creates the
background for the co-operation, co-existence
and differences between the two communities.
Stallman started the FS movement and the GNU
project prompted by his experiences of the early
hacker culture and subsequent events at the MIT
artificial intelligence lab in the 1980s. The project
was founded on a philosophy of software freedom,
and the related views on copyright or the concept
of copyleft. After the creation of the open source
movement in 1998, debates between the two move-
ments have erupted at regular intervals. These

12

Free Software Philosophy and Open Source

debates are grounded in the different ideological
perspectives and sociopsychological motivations
of the movements. The FS movement has laid
technological, legal and ideological cornerstones
that still exist as part of the open source movement.

The sociohistorical
background of the free
software philosophy

The first computer systems were built in the 1940s
and 1950s mainly for military and scientific pur-
poses. One of the earliest research institutes to
use and study computers was the Massachusetts
Institute of Technology (MIT). The artificial in-
telligence (AI) lab at MIT was founded in 1958
and became one of the birthplaces of computer
science and computer culture.

In Hackers (1984), Steven Levy describes the
subculture around the AI lab computers in the
1960s. Young male electronics hobbyists devoted
their time to programming and studying these
machines. They called themselves hackers, a word
denoting a person who enjoys exploring computer
systems, being in control of the systems, and fac-
ing the challenges they present. For a hacker, a
computer is not just a tool, it is also an end in itself.
The computer is something to be respected and
programming has an aesthetics of its own (Hafner
& Lyon, 1996; Levy, 1984; Turkle, 1982).

A subculture was created among the MIT
hackers with traditions and social norms of its
own. Important values for the community were
freedom, intelligence, technical skills, and interest
in the possibilities of computers while bureau-
cracy, secrecy, and lack of mathematical skills
were looked down on. The six rules of this hacker
ethic as later codified by Levy were:

1. 	 Access to computers—and anything which
might teach you something about the way
the world works—should be unlimited and
total. Always yield to the hands-on impera-
tive!

2. 	 All information should be free.
3. 	 Mistrust authority—promote decentraliza-

tion.
4. 	 Hackers should be judged by their hacking,

not bogus criteria such as degrees, age,
race, or position.

5. 	 You can create art and beauty on a com-
puter.

6. 	 Computers can change your life for the bet-
ter. (Levy, 1984, pp. 40-45)1

Computer programs were treated like any
information created by the scientific community:
Software was free for everyone to use, study, and
enhance. Building on programs created by other
programmers was not only allowed, but encour-
aged. On one hand, nobody owned the programs,
and on the other, they were common property of
the community.

In the early 1980s, a conflict arose in the AI
lab when some of the hackers formed a company
called Symbolics to sell computers based on tech-
nology originally developed in the lab. Symbolics
hired most of the hackers, leaving the lab empty.
This, together with the fact that the software on
Symbolics machines was considered a trade secret,
caused a crisis. The community and its way of life
had been destroyed and Stallman later described
himself as “the last survivor of a dead culture”
(Levy, 1984, p. 427; see also Williams, 2002).

Stallman saw an ethical problem in the growing
trend of treating software in terms of property. In
the AI lab, there was a strong spirit of co-opera-
tion and sharing, making the code, in a way, a
medium for social interaction. Thus restrictions
in the access to code were also limitations on how
people could help each other.

In 1984, Stallman published The GNU Mani-
festo announcing his intention to develop a freely
available implementation of the Unix operating
system. He explained his reasons in a section
titled Why I Must Write GNU:

9 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/free-software-philosophy-open-source/29374

Related Content

Determinants of Intention to Use Ride-Hailing Services in Vietnam: An Integrated Model of

Perceived Value and Trust Transfer Theory
Thao Thi Thanh Voand Trong Hung Van (2022). International Journal of Software Innovation (pp. 1-10).

www.irma-international.org/article/determinants-of-intention-to-use-ride-hailing-services-in-vietnam/313382

Business Process Modeling with Services: Reverse Engineering Databases
Youcef Baghdadiand Naoufel Kraiem (2014). Uncovering Essential Software Artifacts through Business

Process Archeology (pp. 177-200).

www.irma-international.org/chapter/business-process-modeling-with-services/96620

Agile Quality or Depth of Reasoning? Applicability vs. Suitability with Respect to Stakeholders'

Needs
E. Berki, K. Siakasand E. Georgiadou (2007). Agile Software Development Quality Assurance (pp. 23-55).

www.irma-international.org/chapter/agile-quality-depth-reasoning-applicability/5067

Integrating DSLs into a Software Engineering Process: Application to Collaborative Construction

of Telecom Services
Vanea Chiprianov, Yvon Kermarrecand Siegfried Rouvrais (2013). Formal and Practical Aspects of

Domain-Specific Languages: Recent Developments (pp. 408-434).

www.irma-international.org/chapter/integrating-dsls-into-software-engineering/71828

Analyzing Human Factors for an Effective Information Security Management System
Reza Alavi, Shareeful Islam, Hamid Jahankhaniand Ameer Al-Nemrat (2013). International Journal of

Secure Software Engineering (pp. 50-74).

www.irma-international.org/article/analyzing-human-factors-effective-information/76355

http://www.igi-global.com/chapter/free-software-philosophy-open-source/29374
http://www.irma-international.org/article/determinants-of-intention-to-use-ride-hailing-services-in-vietnam/313382
http://www.irma-international.org/chapter/business-process-modeling-with-services/96620
http://www.irma-international.org/chapter/agile-quality-depth-reasoning-applicability/5067
http://www.irma-international.org/chapter/integrating-dsls-into-software-engineering/71828
http://www.irma-international.org/article/analyzing-human-factors-effective-information/76355

