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AbstrAct

Evolutionary methods are used in many fields to solve multi-objective optimization problems. Military 
problems are no exception. This chapter looks at a variety of military applications that have utilized 
evolutionary techniques for solving their problem.

intrOductiOn

Many real world problems in the military are in-
herently multi-objective problems (MOPs). Quite 
often, the problem contains competing objectives, 
where the optimization of one objective degrades 
the value of another such as mission success vs. 
resource survival. To solve some of these prob-
lems, researchers have applied numerous optimi-
zation techniques. The technique applied usually 
depends on the complexity of the problem. For a 

simple single objective optimization problem, a 
deterministic method such as depth-first search, 
the simplex technique or Tabu search might be 
the most appropriate method. But for a highly 
complex, high dimensional NP-complete problem, 
a stochastic algorithm may be the better choice 
in finding an acceptable solution in a reasonable 
amount of time. Multi-objective Evolutionary Al-
gorithms (MOEAs) are a stochastic search method 
with the ability to find sets of acceptable tradeoff 
solutions. Also, their performance as addressed in 
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this chapter is less susceptible to the shape of the 
search landscape and the associated Pareto front 
(Coello, Van Veldhuizen, & Lamont 2002). 

For the modern military there are many com-
plex MOPs that require effective solutions to be 
provided in an efficient manner. Military MOPs 
come from a variety of disciplines but usually 
can be symbolically formulated with objectives 
and constraints and thus, are reflected in a math-
ematical or computational model (Coello et al., 
2002). In this chapter we consider a variety of 
explicit military applications including military 
communication networks (design, routing and 
layout), resource management (facilities, engine 
maintenance), mission planning, dynamic simula-
tion and technical resource design optimization 
(low energy laser, autopilot). Other applications 
are briefly mentioned. Through these problem do-
main and MOEA discussions, we wish to motivate 
the use of MOEA stochastic search techniques 
to find efficiently “good” solutions to complex 
multi-objective military problems.

cOMMunicAtiOn netwOrks

Because of the impact of military communication 
networks on overall performance, various network 
problems are addressed. For example, consider 
a network design problem that attempts to find 
the best network configuration with respect to 
total cost and average number of hops. Another 
presented example develops routing optimization 
possibilities and layout optimizations of wire-
less sensor networks. Network sensor layout for 
wireless sensors and associated management are 
other important military applications which are 
discussed. 

network design

Computer networks are vital for the military 
in order to relay information quickly. Kleeman 
(2007a) research the network design problem, 

which is a critical piece for network centric 
warfare. The MOP was derived from the single 
objective problem introduced by Erwin (2006). 
The problem is a variation of the multicom-
modity capacitated network design problem 
(MCNDP). For this problem, a network consists of 
nodes and arcs. Additionally, each node can have 
a number of interfaces (interfaces can be different 
types of connection points in the network—such 
as satellite, infrared or hardwired connections). 
Each interface can be connected to every other 
node (through the same interface type) via an 
arc, but it does not have to be a fully connected 
graph. The arcs are unidirectional and each has 
a fixed capacity. The capacities for each arc can 
be different. Each node can have a commodity 
(messages, packets, etc.) that it needs to send to 
every other node in the network. Each commod-
ity has a bandwidth requirement. This problem 
is detailed enough that the optimization process 
can determine where bottlenecks may be in the 
network and find routes to overcome the bottle-
necks. We let uif denote the number of interfaces 
of type f at node i. The fixed cost of including 
an arc from node i to node j via interface type 
f in the network is denoted cijf. The capacity of 
each arc is given by capijf. In the following arc 
representation we let the number of interface 
types be fixed at 2. We use solid and dashed arcs 
to distinguish between the different interface 

Figure 1. Modified Monte Carlo results for the 
2nd instance of a 10 node problem (Kleeman, 
2007a)
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