
217

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Section 2: Computational Science

DOI: 10.4018/978-1-7998-3479-3.ch017

2

INTRODUCTION

Complex software systems typically involve many interacting applications, with many decisions to take
and many tradeoffs to evaluate, not only in each application but also in the ways in which the various
applications interact. Ideally, applications should be completely decoupled, with no constraints on
one another and completely independent lifecycles. This would allow separate development of each
application and elimination of design and programming inefficiencies due to interaction between the
specifications of applications, which usually cause iterations in requirements for other applications and
consequent changes.

However, applications do need to interact and to cooperate, to collectively fulfill the goals of the
system. Therefore, a fundamental tenet in software design is to reduce application coupling as much
as possible (Bidve, & Sarasu, 2016) without hindering the interaction capabilities necessary to support
the required application interoperability. Application decoupling has also the advantage of improving:

§ Changeability: A change in one application is less likely to have a significant impact in other ap-
plications.

§ Adaptability: Fewer constraints require less effort to adapt to changes in other applications.
§ Reusability: An application with fewer requirements and constraints has an increased applicability

range.
§ Reliability: A smaller set of requirements simplifies the task of finding an alternative application

in case of failure.

In general, the fundamental problem of application design, in terms of interaction, is how to provide
(at most) the minimum coupling possible while ensuring (at least) the minimum interoperability require-
ments. Therefore, the main goal is to ensure that each interacting application knows just enough about
the others to be able to interoperate with them but no more than that, to avoid unnecessary dependencies
and constraints. This is an instance of the principle of least knowledge (Hendricksen, 2014).

The two most used application integration approaches, Service-Oriented Architecture (SOA) (Erl,
Merson, & Stoffers, 2017) and Representational State Transfer (REST) (Fielding, Taylor, Erenkrantz,
Gorlick, Whitehead, Khare, & Oreizy, 2017) hardly comply with the principle of least knowledge. They
achieve interoperability but do not solve the coupling problem, since they require, in practice, that the
schemas used by the interacting applications are the same.

SOA is good at modeling distributed systems based on the service paradigm (an extension the object-
oriented paradigm for distributed applications) but involves rather complex and static service specifications
and entails sharing schemas between client and server, which is a heavy form of coupling. Changing the

Improving the Integration of
Distributed Applications

José Carlos Martins Delgado
 https://orcid.org/0000-0002-2536-4906

Instituto Superior Técnico, Universidade de Lisboa, Portugal

Improving the Integration of Distributed Applications

218

interaction between Web Services is not a trivial task. REST is much simpler, justifying its increasing
popularity, but is rather low level and not the best match for general-purpose, behavior-oriented distributed
applications. It also entails a high level of coupling, since it requires that both interacting applications
share the same media type specification.

This article revisits the application integration problem with an open mind, without a priori restric-
tions from specific technologies, such as Web Services for SOA and RESTful APIs for REST. The only
assumption is that there are applications that need to interact, by using messages. The idea is to base the
interoperability mechanism on the concepts of compliance (Czepa, Tran, Zdun, Kim, Weiss, & Ruhsam,
2017) and conformance (Carmona, van Dongen, Solti, & Weidlich, 2018), which allow partial interoper-
ability, rather than on sharing data schemas. This makes all the difference. Unlike Web Services, there
are no declared schemas that a client is forced to use in their entirety. Unlike RESTful applications, the
client and server do not have to agree on a specific data type. Each resource (dataset, message or dis-
tributed application) has its own schema, stemming from its service (interface) definition. Checking for
interoperability between two resources (for example, between a message and the parameter required by an
operation) is done structurally, component by component, recursively until primitive resources are found.

The rest of the article is structured as follows. It starts by establishing a simple interoperability frame-
work, with the various abstraction levels at which interoperability must be established. After defining
the fundamental problem of application integration, the two most common solutions, SOA and REST,
are analyzed and compared, in particular in what coupling is concerned. Compliance and conformance
are then presented and proposed as a solution to reduce coupling to the bare minimum required by the
interacting applications.

BACKGROUND

Modern applications, designed and managed in a distributed way, need to interact and collaborate with
an increasing scale, since systems are becoming more complex and diversified. Digital-based technolo-
gies, such as cloud computing (Varghese, & Buyya, 2018), mobile computing (Page, & Thorsteinsson,
2018), and the Internet of Things (Paul, & Saraswathi, 2017) became ubiquitous and disruptive. In the
recent 4.0 trend (Dornberger, 2018), collaboration means generating and exchanging more and more
data, either at business, personal, or sensor levels. The fourth industrial revolution, commonly known
as Industry 4.0 (Liao, Deschamps, Loures, & Ramos, 2017), in which agile reconfigurability of the
production supply chain is a fundamental objective, is just an example.

All this raises the application integration problem to a completely new level, in which conventional
integration technologies expose their limitations and require new solutions.

Integration (Panetto & Whitman, 2016) can be broadly defined as the act of instantiating a given
method to design or adapt two or more systems, so that they cooperate and accomplish one or more com-
mon goals. To interact, applications must be interoperable, i.e., able to meaningfully operate together.

The ISO/IEC/IEEE 24765 standard (ISO, 2010) defines interoperability (Agostinho, Ducq, Zacha-
rewicz, Sarraipa, Lampathaki, Poler, & Jardim-Goncalves, 2016) as “the ability of two or more systems
or components to exchange information and to use the information that has been exchanged”. Therefore,
merely exchanging information is not enough. Interacting applications must also be able to understand
it and to react according to each other’s expectations.

A related problem is coupling (Bidve, & Sarasu, 2016), which provides an indication of how much
applications are intertwined and depend on each other. Some degree of coupling is unavoidable, since

14 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/improving-the-integration-of-distributed-

applications/260188

Related Content

An Open and Service-Oriented Architecture to Support the Automation of Learning Scenarios
Ângels Rius, Francesc Santanach, Jordi Conesa, Magí Almiralland Elena García-Barriocanal (2011).

International Journal of Information Technologies and Systems Approach (pp. 38-52).

www.irma-international.org/article/open-service-oriented-architecture-support/51367

Bipolar Model in Collective Choice
Ayeley P. Tchangani (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

7282-7291).

www.irma-international.org/chapter/bipolar-model-in-collective-choice/184425

Intelligent System of Internet of Things-Oriented BIM in Project Management
Jingjing Chen (2023). International Journal of Information Technologies and Systems Approach (pp. 1-14).

www.irma-international.org/article/intelligent-system-of-internet-of-things-oriented-bim-in-project-management/323803

Agile Software Development Process Applied to the Serious Games Development for Children

from 7 to 10 Years Old
Sandra P. Cano, Carina S. González, César A. Collazos, Jaime Muñoz Arteagaand Sergio Zapata (2015).

International Journal of Information Technologies and Systems Approach (pp. 64-79).

www.irma-international.org/article/agile-software-development-process-applied-to-the-serious-games-development-for-

children-from-7-to-10-years-old/128828

Virtual Communities
Antonella Mascio (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 5790-

5797).

www.irma-international.org/chapter/virtual-communities/113034

http://www.igi-global.com/chapter/improving-the-integration-of-distributed-applications/260188
http://www.igi-global.com/chapter/improving-the-integration-of-distributed-applications/260188
http://www.irma-international.org/article/open-service-oriented-architecture-support/51367
http://www.irma-international.org/chapter/bipolar-model-in-collective-choice/184425
http://www.irma-international.org/article/intelligent-system-of-internet-of-things-oriented-bim-in-project-management/323803
http://www.irma-international.org/article/agile-software-development-process-applied-to-the-serious-games-development-for-children-from-7-to-10-years-old/128828
http://www.irma-international.org/article/agile-software-development-process-applied-to-the-serious-games-development-for-children-from-7-to-10-years-old/128828
http://www.irma-international.org/chapter/virtual-communities/113034

